
Design and Implementation
of a Management Toolset

for TINA-based
PCS Components

Diploma Thesis / Diplomarbeit

Andreas Guther

Matrikelnummer 114481

Technische Universität Berlin
Fachbereich Informatik
Institut für Kommunikations- und Softwaretechnik
Fachgebiet Offene Kommunikationssysteme (OKS)
Franklinstraße 28-29
10587 Berlin

Aufgabensteller und Gutachter:
Prof. Dr. Radu Popescu-Zeletin und Dr. Thomas Magedanz

Der Autor erklärt an Eides statt, daß er diese Arbeit ohne unerlaubte fremde Hilfe und unter
ausschließlicher Verwendung der genannten Quellen und Mittel angefertigt hat.

Berlin, den

Andreas Guther

Design and Implementation
of a Management Toolset

for TINA-based
PCS Components

Diploma Thesis

Andreas Guther

III

Vorbemerkung
Die vorliegende Ausgabe stimmt mit meiner Diplomarbeit, wie ich diese am 2.
Mai 1997 eingereicht habe, in Inhalt und Aufbau überein. Wo mir nachträglich
Rechtschreibefehler und ähnliches aufgefallen sind bzw. ich auf diese hingewie-
sen wurde, habe ich eine Korrektur vorgenommen, ohne dies explizit anzuzei-
gen.

IV

V

Contents at a Glance

1 Introduction ... 1

Part 1 Basic Concepts, Principles and Rules

2 Telecommunications Information Networking Architecture... 9
3 Personal Communication Support .. 15
4 The TANGRAM DPE in Relationship to the PCS ... 21
5 Common Object Request Broker Architecture.. 33

Part 2 Requirements and Design

6 Requirement Specification.. 41
7 Management Toolset Architecture.. 45
8 Objects to be Managed... 57
9 Package Concepts and Design .. 59

Part 3 Implementation

10 Package Usage .. 67
11 Abstract Classes, Interfaces and Exceptions ... 71
12 Dynamic Model ... 73
13 User Agent Management.. 77
14 Terminal Management.. 79
15 Location Management .. 83
16 Registration Management... 85
17 Utilities .. 87
18 Graphical User Interfaces ... 89
19 Java’s Applications and Applets ... 93

Part 4 Views–The Graphical User Interface

20 User Data Management.. 99
21 Terminal Equipment Management.. 103
22 Location and Location Context Management ... 109
23 Registration Management... 113

Part 5 Conclusion

24 Summary .. 119
25 Suggestions for Future Extensions... 123

Part 6 Appendix

26 Deployment... 129
27 Programmers Guide ... 133
28 Style Guide ... 135
29 Notations... 137
30 Catalog of Applied Design Patterns.. 141
31 A Cookbook for Portable Clients—A Pattern System ... 159
32 Bibliography .. 163
33 Glossary.. 171
34 Acronyms.. 173
35 Index ... 175

VI

VII

Zusammenfassung
Die Telekommunikation ist einer der zur Zeit am meisten expandierenden Berei-
che der internationalen Wirtschaft. Bereiche neuerer Technik wie Audio und
Video wachsen mit herkömmlichen wie Fernsehen und Kommunikation über
das Telefon immer stärker zusammen und können generell unter dem Schlag-
wort Multimedia eingeordnet werden. Mit dieser Verschmelzung einhergehend
wächst die Anforderung an telekommunikationsunterstützende Software
immens. Der Forderung nach kürzeren Entwicklungs- und Einführungszyklen
neuer Telekommunikationsdienste stehen veraltete Softwaresysteme gegenüber,
die diesen Ansprüchen selten wirklich gerecht werden können.

Seit Anfang der 90er Jahre sind Bestrebungen im Gange, Lösungen zu entwik-
keln, die es ermöglichen, Telekommunikationsdienste jeglicher Art schneller und
unkompliziert einsetzen zu können. Als Beispiele seien hier Intelligente Netze
(Intelligent Network, kurz IN), Telekommunikations Management Netze (Telecom-
munication Management Network, kurz TMN) oder auch Advanced Intelligent Net-
work (AIN) genannt.

Seit 1992 besteht das Telecommunications Information Networking Architecture
Consortium (TINA-C), welches ein Zusammenschluß der wichtigsten Netzwerk
Betreiber und Computer Hersteller ist und bis Ende 1997 projektiert wurde.
Erklärtes Ziel des TINA-C ist es, basierend sowohl auf bestehenden Lösungen
wie z.B. IN und AIN als auch auf neuen Konzepten eine Telekommunikations-
Architektur zu entwerfen, die für beliebige Netze wie PSTN, ISDN, B-ISDN etc.
benutzt werden kann. Dies gilt gleichermaßen für Telekommunikationsanwen-
dungen als auch für das Management dieser Anwendungen und deren Ressour-
cen.

Zur begleitenden Auswertung und Evaluierung der TINA-C Ergebnisse
wurde 1996 das TINA-Evaluierungsprojekt mit den Bereichen Evaluierung von
DPEs, Definition einer TINA-konformen Vorgehensweise und dem TINA-C
Auxiliary Project Personal Communications Support in TINA (PCS in TINA)
ins Leben gerufen. Das Projekt wird im Zusammenschluß der Technischen Uni-
versität Berlin und der GMD Fokus unter der Schirmherrschaft der Deutschen
Telekom AG durchgeführt und endet Mitte 1997. Das TINA-C Auxiliary Projekt
PCS in TINA führt Konzepte zur Unterstützung der Mobilität und der verbesser-
ten Erreichbarkeit von Benutzern moderner Telekommunikationsdienste in die
TINA Architektur ein. Eigens dazu wurden bestimmte Komponenten der TINA
Architektur zum Teil erweitert als auch neue Komponenten eingeführt. Im Pro-
jektgesamtzusammenhang wurde ebenfalls an der GMD die TANGRAM DPE
Plattform entwickelt, die eine Umsetzung der TINA Architektur auf der Ebene
der verteilten Anwendungen unter Verwendung der noch jungen Technologie
der Common Object Request Broker Architecture (CORBA) ist. In diese Plattform
wurden die PCS in TINA Komponenten erfolgreich integriert.

Aufgabe der vorliegenden Arbeit ist es, einen Teil der PCS in TINA Kompo-
nenten anhand benutzerfreundlichen Anwendungen zu verwalten. Dies beson-
ders unter Berücksichtigung von Erweiterbarkeit und Plattformunabhängigkeit.
Bei der Realisierung dieser Ziele kommt zum einen die Benutzung der neuen,
plattformunabhängige Entwicklungssprache Java zum Tragen, das Anwenden
von CORBA Funktionalitäten als auch der Einsatz der noch sehr jungen Software
Entwicklungs-Handbücher, der Design Patterns.

VIII

IX

Abstract
Telecommunications is one of the fastest expanding areas in today’s international
economy. The newest hightech developments in audio and video are converging
more and more with the traditional television and communication systems con-
nected by the telephone, to form a new arena for advancements in these areas
termed “multimedia”. As a by-product of this melting of medias, the demand for
telecommunications supportive software is growing rapidly. Outdated software
systems are seldom able to meet the need for the ever shorter development and
introduction cycles of new telecommunications services

Since the early 90’s, great effort has been put into developing ways of speeding
up and simplifying telecommunication services of every kind. Some of the result-
ing service networks are for example: the Intelligent Network with the abbrevia-
tion IN, the Telecommunication Management Network or TMN, and the
Advanced Intelligent Network or AIN just to name a few.

In 1992 a development project called the Telecommunications Information
Networking Architecture Consortium or TINA-C was brought to life and has
since successfully joined the most important network carriers with the computer
industry. The project is projected to continue running through 1997. The declared
goal of TINA-C is, using solutions already provided by existing networks like IN
and AIN as a base, as well as developing new concepts, to design a telecommuni-
cations architecture that could be used for every kind of network, for example the
PSTN, ISDN, and B-ISDN nets. This goes equally for telecommunications appli-
cations and the management of these applications and of their resources.

A companion project to the TINA-C project, the TINA-C Evaluation project
was formed in 1996. It’s aims are to support and evaluate TINA-C’s results in the
areas of: Evaluation of DPEs, Definition of a TINA-conform Procedure and the
TINA-C Auxiliary Project Personal Communications Support in TINA (PCS in
TINA). The project, which is in partnership with the Technical University of Ber-
lin and the GMD Fokus under the umbrella of the German Telekom AG, will con-
tinue until the middle of 1997. The TINA-C Auxiliary Project PCS in TINA
developed concepts to support mobility and to improve accessibility for users of
modern telecommunications services which are with in the TINA architecture. To
the same purpose, a certain number of completely new components as well as the
partial extension of existing ones, have been introduced. For the overall continu-
ity of the project, the TANGRAM DPE platform was developed—also by the
GMD. The TANGRAM DPE platform shifted the TINA architecture to the level of
distributed applications using the still recent Technology of the Common Object
Request Broker Architecture (CORBA). With in this platform, the PCS in TINA
components were successfully integrated.

The task I am setting out to accomplish with my program, and with the toolset
it is based on, is to assure that a part of the PCS in TINA components can be
administered with user friendly applications and to give special regard to exten-
sibility and platform independence. To realize this goal, one is led to the use of
Java, the new platform independent programing language, to the application of
CORBA functions and to the quite recent software development handbooks—
Design Patterns.

X

XI

Ac kno wledgments
This diploma thesis was made possible by the Department of Open Communica-
tion Systems at the Technical University and the German National Research Cen-
ter for Information Technology GMD FOKUS. It is an independent work under
the guidance of Professor Dr. Dr. h.c. Popescu-Zeletin.

First, I would like to thank my wife Hally, who guided me in finding the right
english sentences and expression and becoming more clear and consistent in
expressing my work.

I would like to express my thanks to those people who offered me the possi-
bility to do research in the topics of this diploma thesis and/or guided me during
all phases of this work: Professor Dr. Dr. h.c. Radu Popescu-Zeletin, Dr. Thomas
Magedanz, Dipl.-Inform. Tim Eckardt and specially Dipl. Inform. Ute Scholz.

I would also like to thank all my colleagues at GMD FOKUS for their various
kinds of support. Especially the members of the PCS in TINA project, the mem-
bers of the departments OKS of the Technical University of Berlin, and the mem-
bers of the department ICE of GMD FOKUS: Dipl.-Inform. Stefan Arbanowski,
Dirk Ahrens, Metin Çetinkaya, Andreas Dannert, Thomas Gringel, Dipl.-Inform.
Lars Hagen, Dipl.-Inform. Ali Hafezi, Dipl.-Inform. Stephan Hübener, Dipl.-
Inform. Patrick Kielhöfer, Dipl.-Inform. Sven Krause, Thomas Masjosthusmann,
Dipl.-Ing. Tom Pfeifer, Dipl.-Inform. Martin Vetter, Dipl.-Inform. Sven van der
Meer, Dipl.-Inform. Hao Wang, Dipl.-Inform. Sven Winter and all those I forgot
to mention.

Andreas Guther

Berlin, April 1997

XII

XIII

Table of Contents

Vorbemerkung ... III

Contents at a Glance ..V

Zusammenfassung ...VII

Abstract.. IX

Acknowledgments..XI

Table of Contents...XIII

List of Figures ... XIX

List of Tables... XXI

1 Introduction ... 1

1.1 Motivation .. 1
1.2 Thesis Project Scope... 3
1.3 Guide to Readers .. 4
1.4 Map Through this Book ... 6

Part 1 Basic Concepts, Principles and Rules

2 Telecommunications Information Networking Architecture... 9

2.1 TINA Layered Architecture .. 9
2.1.1 TINA Applications Layer... 9
2.1.2 Distributed Processing Environment Layer .. 9
2.1.3 Native Computing and Communications Environment... 10
2.1.4 Hardware Resource Layer ... 10

2.2 TINA Session Concept .. 10
2.2.1 Access Session .. 11
2.2.2 Service Session.. 11
2.2.3 Communication Session... 11

2.3 Separation Aspects ... 12
2.4 Processing Environment for Distributed Objects ... 12
2.5 Summary ... 13

3 Personal Communication Support .. 15

3.1 Overview.. 15
3.1.1 Personal Mobility Support .. 15
3.1.2 Control of Reachability ... 17
3.1.3 User Profile Management... 18

3.2 Access Session Information Model ... 19

4 The TANGRAM DPE in Relationship to the PCS ... 21

4.1 Introduction.. 21
4.2 General Concepts.. 22
4.3 TANGRAM Services.. 24
4.4 TANGRAM Engineering Concepts .. 25

4.4.1 Common Data Types ... 26
4.4.2 Configuration Manager... 26
4.4.3 Life Cycle Manager .. 28
4.4.4 Computational Object Control Interface ... 29

XIV

4.4.5 Access Session Configuration Manager... 30

5 Common Object Request Broker Architecture.. 33

5.1 Introduction .. 33
5.2 CORBA Components... 33

5.2.1 Application Objects... 33
5.2.2 Common Facilities .. 34
5.2.3 Common Object Services... 34

5.3 Object Services.. 34
5.3.1 CORBA Naming Service .. 35
5.3.2 CORBA Relationship Service ... 35
5.3.3 CORBA Life Cycle Service ... 36

5.4 The Inter-ORB Communication Architecture ... 36
5.4.1 GIOP... 37
5.4.2 IIOP .. 37
5.4.3 IOR ... 38

Part 2 Requirements and Design

6 Requirement Specification .. 41

6.1 Introduction .. 41
6.2 Objective of this Work.. 42
6.3 Summary ... 44

7 Management Toolset Architecture .. 45

7.1 Layering Concepts... 45
7.1.1 Layer for Application... 46
7.1.2 Layer for Service Access Management.. 46
7.1.3 Layer for Service Access.. 47

7.2 Design of the Overall Objects .. 48
7.2.1 Factories... 48
7.2.2 Models .. 48
7.2.3 Views .. 49
7.2.4 Controllers .. 49
7.2.5 Service Access Manager.. 50

7.3 Design of the Applications ... 51
7.3.1 Administering the Data ... 52
7.3.2 Displaying the Data .. 52
7.3.3 Controlling the Access to the Data ... 52

7.4 Design of the Service Access Manager... 53
7.5 Design of the Inter Layer Communication ... 53

7.5.1 Exception Handling... 53
7.5.2 Application Layer to Service Access Manager Layer ... 56
7.5.3 Service Access Manager Layer to Service Access Layer .. 56

8 Objects to be Managed... 57

8.1 User Agent... 57
8.2 Local Context... 57
8.3 Terminal Equipment Agent .. 57
8.4 Registration Server .. 58

9 Package Concepts and Design... 59

9.1 What Are Packages for?.. 59
9.2 Guidelines for Naming Packages .. 60

XV

9.3 Packages of the Management Toolset .. 61
9.4 Application Programming Interface Related Packages ... 62
9.5 Package Tangram ... 62
9.6 Graphical User Interface Related Packages ... 63
9.7 Packages for Accessing the TANGRAM Platform... 63
9.8 Package for Accessing the Naming Service.. 64

Part 3 Implementation

10 Package Usage .. 67

10.1 Package Tree for the Toolset .. 67
10.2 Package ‘Management’ ... 68
10.3 Package ‘Dialogs’ .. 68
10.4 Package ‘Tangram’.. 69
10.5 Package ‘Naming Context’ .. 69

11 Abstract Classes, Interfaces and Exceptions ... 71

11.1 Classes.. 71
11.2 Interfaces... 71
11.3 Exceptions ... 72

12 Dynamic Model ... 73

12.1 Application Layer ... 73
12.2 Platform Access... 75

13 User Agent Management.. 77

14 Terminal Management.. 79

15 Location Management .. 83

16 Registration Management... 85

17 Utilities .. 87

17.1 Classes.. 87
17.2 Interfaces... 87

18 Graphical User Interfaces ... 89

18.1 Shared Views and Dialogs .. 89
18.2 User Agent... 90
18.3 Local Context... 90
18.4 Terminal Equipment Agent .. 90
18.5 Registration Server.. 91

19 Java’s Applications and Applets ... 93

19.1 The Usage of Applications and Applets... 93
19.2 The Management Toolset Used With Applications and Applets.. 94
19.3 Problems While Using Applets .. 95

19.3.1 Connecting Different Hosts .. 95
19.3.2 Loading CORBA Functionalities... 95

19.4 Possible Solutions ... 96
19.4.1 Usage of A Gateway-Server... 96
19.4.2 Usage of ‘Thin Clients’ ... 96

XVI

Part 4 Views–The Graphical User Interface

20 User Data Management.. 99

20.1 The PCS User Agent ... 99
20.2 Usage .. 99

20.2.1 How to Start.. 99
20.2.2 Listing of all Available Users in the System.. 100
20.2.3 Getting User Data... 100
20.2.4 Creating a New User Agent.. 100
20.2.5 Modify User Data.. 101
20.2.6 Undo and Redo .. 101
20.2.7 Logging... 102
20.2.8 Dialog About ... 102

21 Terminal Equipment Management.. 103

21.1 The PCS Terminal Equipment Agent... 103
21.2 Usage .. 104

21.2.1 How to Start.. 104
21.2.2 Listing of all Available Terminals of the System ... 104
21.2.3 Getting Terminal Data .. 104
21.2.4 Creating a New Terminal Equipment Agent ... 105
21.2.5 Modifying Terminal Data... 106
21.2.6 Set Codings of Connection Control .. 107
21.2.7 Set Coding Quality of Service Control .. 108
21.2.8 Undo and Redo .. 108
21.2.9 Logging... 108

22 Location and Location Context Management ... 109

22.1 The PCS Location.. 109
22.2 The PCS Local Context ... 109
22.3 Usage .. 109

22.3.1 How to Start.. 110
22.3.2 Listing of all Available Terminals in the System ... 110
22.3.3 Getting Location Data... 110
22.3.4 Creating a New Location .. 111
22.3.5 Modifying a Location... 111
22.3.6 Deleting a Location... 111
22.3.7 Configuring a Local Context ... 111
22.3.8 Undo and Redo .. 112
22.3.9 Logging... 112

23 Registration Management... 113

23.1 The PCS Registration Server .. 113
23.2 Usage .. 113

23.2.1 How to Start.. 114
23.2.2 Listing of all Registered Users.. 114
23.2.3 Registering a User.. 114
23.2.4 De-register a User .. 115
23.2.5 Purge Registrations .. 115

XVII

Part 5 Conclusion

24 Summary .. 119

24.1 Design ... 119
24.2 Implementation .. 120
24.3 Experiences, Problems and Recommendations.. 121

24.3.1 Flaws in Java.. 121
24.3.2 Converting Applications to Applets... 121
24.3.3 Performance... 121
24.3.4 Using a Graphical User Interface Builder ... 121

25 Suggestions for Future Extensions... 123

25.1 Towards TINA Service Architecture 4.1 .. 123
25.2 Management as TINA Service... 123
25.3 Security.. 123
25.4 Logging.. 123
25.5 Performance .. 124
25.6 Usage of Different Platforms ... 124
25.7 Integration of Authoring Components.. 125
25.8 Applets in a Netscape Browser ... 125
25.9 Extended Usage of Factories .. 125

Part 6 Appendix

26 Deployment... 129

26.1 Start Parameter for the Applications.. 129
26.2 Using the Object Request Broker .. 129
26.3 Packages Needed to Run the Applications ... 130
26.4 Script Files to Start the Applications.. 130

27 Programmers Guide ... 133

27.1 The Programming Environment... 133
27.2 Generating Java Binary Code ... 133
27.3 Running and Testing the Binaries ... 133
27.4 Source Code Documentation .. 134

28 Style Guide ... 135

28.1 Structure and Documentation.. 135
28.2 Naming Conventions ... 135
28.3 Access to Class Fields .. 136
28.4 Recommendations... 136

29 Notations... 137

29.1 Computational Objects .. 137
29.2 Engineering Objects .. 137
29.3 Interaction Diagrams ... 138
29.4 Packages... 138
29.5 OMT Notation .. 139

30 Catalog of Applied Design Patterns.. 141

30.1 What are Design Patterns for? .. 141
30.2 How to Read this Chapter ... 142
30.3 Layers.. 143
30.4 Observer.. 144

XVIII

30.5 Model-View-Controller ... 146
30.6 Command .. 149
30.7 Command Processor ... 150
30.8 Factory Method.. 152
30.9 Singleton.. 154
30.10 Facade... 155
30.11 Mediator... 156

31 A Cookbook for Portable Clients—A Pattern System ... 159

31.1 Portable Client ... 159
31.2 The Sight ... 160
31.3 The Transit... 161
31.4 The Admittance.. 162

32 Bibliography .. 163

33 Glossary.. 171

34 Acronyms .. 173

35 Index ... 175

XIX

List of Figur es

Figure 1-1. Distributed Access to PCS Components... 2
Figure 1-2. Impacts on this Work... 3
Figure 1-3. Structure of this Work.. 4
Figure 1-4. Map Through this Book ... 6
Figure 2-1. Basic Structure of Telecommunications Software in a TINA Environment................ 10
Figure 2-2. Support of Multiple Communication Sessions in TINA.. 12
Figure 3-1. PCS–Enhanced Access Session Information Model... 20
Figure 4-1. The TANGRAM DPE... 21
Figure 4-2. Usage of Different ORB Domains in TANGRAM... 22
Figure 4-3. Mapping of TINA Computational Objects to CORBA Objects 23
Figure 4-4. The TANGRAM Naming Graph... 24
Figure 4-5. The TANGRAM Configuration and Lifecycle Managers.. 25
Figure 4-6. Creation of an Object Instance.. 29
Figure 4-7. Engineering Viewpoint on Management.. 31
Figure 5-1. Common Object Request Broker Components ... 34
Figure 5-2. CORBA Inter-ORB .. 37
Figure 6-1. PCS Enhancements to the TINA Access Session .. 41
Figure 6-2. Bridging With Three Different ORB Implementations.. 44
Figure 7-1. Toolset Layering Concepts.. 45
Figure 7-2. Toolset Layer for Application... 46
Figure 7-3. Toolset Layer for Service Access Manager... 46
Figure 7-4. Toolset Layer for Service Access Manager... 47
Figure 7-5. Abstract and Concrete Factories... 48
Figure 7-6. The Class Model With Aggregated Informational Objects... 48
Figure 7-7. The Class View ... 49
Figure 7-8. The Class Controller.. 49
Figure 7-9. The Class Service Access Manager ... 50
Figure 7-10. Framework for Management Toolset Applications .. 51
Figure 7-11. From Abstract Manager to Concrete Manager.. 53
Figure 7-12. Exceptions Thrown by Layers ... 55
Figure 7-13. Exception Inheritance Hierachy... 55
Figure 9-1. The Management Toolset Package .. 61
Figure 9-2. The Application Programming Interface Package ... 62
Figure 9-3. The Tangram Package.. 62
Figure 9-4. The Graphical User Interface Package ... 63
Figure 9-5. The TANGRAM Package .. 64
Figure 10-1. The Package Tree of the Management Toolset .. 67
Figure 12-1. Initialization Phase of a Management Application... 75
Figure 12-2. Modification of Data... 76
Figure 13-1. ODL Extract of UA.ODL .. 77
Figure 14-1. ODL Extract of TEA.ODL .. 79
Figure 19-1. Management Applet Loaded With a Netscape Browser via the Internet................... 94
Figure 19-2. Using an Additional Server as Gateway to Other Hosts.. 96
Figure 19-3. Management Applets as ‘Thin Clients’ .. 96
Figure 20-1. Main Window ‘User Configuration’ .. 99
Figure 20-2. Menus ‘Undo’ And ‘Redo’.. 101
Figure 20-3. Dialog ‘Logging Options’ ... 102
Figure 20-4. Dialog ‘About’ .. 102
Figure 21-1. Main Window ‘Terminal Management Application’.. 103
Figure 21-2. Dialog ‘Select Terminal’... 104
Figure 21-3. Group ‘Common Terminal Information’ ... 105

XX

Figure 21-4. Group ‘Control’ .. 106
Figure 21-5. Dialog ‘Supported Codings’ ... 107
Figure 21-6. Dialog ‘Coding Quality’ .. 108
Figure 22-1. Main Window ‘Location Configuration Management’ .. 110
Figure 22-2. Dialog ‘Add Terminals to a Location’ ... 112
Figure 23-1. Dialog ‘Registration Management’... 113
Figure 23-2. Group ‘User Registration’ .. 114
Figure 23-3. Dialogs ‘Users’ and ‘Locations’.. 115
Figure 23-4. Group ‘Timedependent Deletion of Registrations’... 116
Figure 26-1. Script File to Start the User Data Configuration Tool .. 131
Figure 26-2. Script File to Start the Terminal Data Configuration Tool .. 131
Figure 26-3. Script File to Start the User Data Configuration Tool .. 132
Figure 26-4. Script File to Start the Registration Management Tool.. 132
Figure 27-1. Source Code Documentation Available with a WWW Browser 134
Figure 29-1. Computational Object Graphical Description... 137
Figure 29-2. Engineering Computational Object Graphical Description 137
Figure 29-3. Interaction Diagram Notation... 138
Figure 29-4. Package Notation .. 138
Figure 30-1. Structure of the Design Pattern ‘Observer’.. 145
Figure 30-2. Multiple Views of the Same Model .. 147
Figure 30-3. Structure of the Design Pattern ‘Model-View-Controller’ ... 148
Figure 30-4. Structure of the Design Pattern ‘Command’ .. 150
Figure 30-5. Structure of the Design Pattern ‘Command Processor’ ... 151
Figure 30-6. Structure of the Design Pattern ‘Factory Method’.. 153
Figure 30-7. Structure of the Design Pattern ‘Singleton’.. 154
Figure 30-8. Structure of the Design Pattern ‘Facade’... 156
Figure 30-9. Structure of the Design Pattern ‘Mediator’... 157

XXI

List of Tables

Table 7-1. Mapping of Exceptions .. 54
Table 10-1. Packages of the Management Package .. 68
Table 10-2. Graphical User Interface Dependent Packages .. 68
Table 10-3. Packages Created from the Tn IDL ... 69
Table 11-1. Abstract Classes Defined in Package mngmt ... 71
Table 11-2. Interfaces Defined in Package mngmt .. 71
Table 11-3. Exceptions Defined in Package mngmt ... 72
Table 13-1. Classes in Package ‘ua’ .. 77
Table 14-1. Classes in Package ‘tea ‘ .. 80
Table 15-1. Classes in Package ‘lcxt’ ... 83
Table 16-1. Classes in package ‘rs’ .. 85
Table 17-1. Classes in Package ‘util’ .. 87
Table 17-2. Interfaces in Package ‘util’ ... 88
Table 18-1. Classes in Package ‘dialog’ ... 89
Table 18-2. Classes in Package ‘viewUA’ .. 90
Table 18-3. Classes in Package ‘viewLCxt’ .. 90
Table 18-4. Classes in Package ‘viewTEA’ .. 90
Table 18-5. Classes in Package ‘viewRS’ .. 91
Table 26-1. List of Available Start Parameter ... 129
Table 26-2. Packages Needed to Run the Management Toolset ... 130

XXII

1

1 Introduction

The TINA-C Auxiliary Project Personal Communications Support in TINA (PCS in
TINA) enhanced the TINA Access Session in terms of the ‘reachability’ of end-
users for incoming calls. PCS in TINA aims to incorporate concepts of Personal
Communications Support (PCS) into the TINA Service Architecture in order to
provide generic personal communications-related capabilities in a uniform way
to an open set of TINA-based telecommunication services1. Although terminal
mobility is not part of the PCS in TINA project, the concept of PCS as defined
within PCS in TINA addresses aspects of personal mobility and can be under-
stood as an extension of the concepts of personal mobility as defined by Universal
Personal Telecommunications (UPT). The PCS in TINA concepts allow the end-
users to register at end-user systems (terminals) as well as at locations which
were not foreseen in the original TINA Service Architecture. Furthermore, PCS in
TINA introduces mechanisms for advanced invitation handling to define han-
dling policies according to which invitations sent to the invitee’s User Agent will
be automatically processed.

1.1 Motivation

To provide the mechanisms described above, it was necessary for PCS in TINA to
introduce new components into the TINA architecture, as well as to enhance
existing ones. Some of these components, i.e. computational objects, are being
created automatically by the system whenever they are needed, others have to be
managed by system operators or even end-users during the lifetime of a system.

For the management of these computational objects, I have designed and
implemented a generic management toolset especially for this thesis project. This
toolset can be seen as a craftsman’s tool box. It consists of different, ‘plugable’
components serving the needs of a programmer, to build a management applica-
tion to administer some of the PCS in TINA components. The management appli-
cations which have resulted from this project, are a compound of those
components. The design was influenced by different points of view concerning
the technical constraints of the underlying platform and how such a management
toolset should be used. The following briefly sketches those contrasting points of
view.

Both system operators and end-users need support so that they can manage the
components in a transparent manner. That means, the user should be, as far as
possible, unaware of and unhampered by the complexity of the underlying sys-
tem.

Thus, management applications with graphical user interfaces should provide
easy management of the component which is uncoupled with the technical
aspects of the underlying implementation. Such management applications
should, ideally, be available on the most common computer architectures, i.e.
independent from an underlying operation system.

1. [Eckardt+96a], p. 13

Motivation Introduction

2

Speaking from a technical standpoint, access to the computational objects is
rather complicated. Access to the different PCS-nodes is granted through differ-
ent Object Request Broker implementations. Depending on the purpose of the
action, some computational objects have to be accessed in more than one way.

It is desirable to have an application programming interface that hides the
complexity of distributed access as much as possible, and provides a simplified
but still powerful access to the different interfaces of the computational objects.

Another point of central importance for the motivational impetus behind my
design, was the state of the underlying distributed processing environment; the
TANGRAM DPE. The TANGRAM DPE is a DPE implementation which mirrors
the actual state of the TINA-C concepts—and these concepts are still in flux. Dur-
ing the design phase of this thesis project in the fall of 1996, the TANGRAM DPE
was based on the TINA Service Architecture 2.0 or SA 94 from 19952. It was obvi-
ous then, that the Service Architecture would go through major changes before
the end of the year. In december 1996, TINA-C delivered the Service Architecture

2. [Berndt+95]

Management

Figure 1-1. Distributed Access to PCS Components

Domain A

TANGRAM
DPE

Domain B

Application

PCS Components

Other Components

Object Request Broker

Java ORB

C++ ORB Smalltalk ORB

create

delete

modify
…

…

The TANGRAM DPE consists of different domains accessible through different
ORB implementations. The management applications are implemented in Java
and use a Java ORB. The management applications were constructed using a
three layer architecture.

Thesis Project Scope

3

4.03 or SA 96 which was followed one month later by the Service Architecture
4.14. At the time of this writing, the TANGRAM project works on a migration of
their DPE implementation from SA94 to SA96.

For these reasons, it was important to design the access to a platform that is,
so to speak, ’under construction’ in such a way that changes in the platform
would cause as little change as possible in the implementation of the manage-
ment toolset.

When researching this project, I came across a book which, by introducing me to
the design pattern movement, revolutionized my way of thinking about the
design of object oriented software. The book is titled, Design Patterns: Elements
of Reusable Object-Oriented Software’5. The impact of this book and related pub-
lications on my design can be seen in the resulting implementation—it is more
efficient, easier to maintain and, I would go as far as saying, more elegant than it
would have been without the knowledge that the pattern catalogues have to
offer. While getting familiar with design patterns, I also discovered their impact
on the design of Common Object Request Broker Architecture as well as on the
design of the programming language Java, which was used for the implementa-
tion of this management toolset.

1.2 Thesis Project Scope

This thesis project aims at designing reusable, platform independent generic
components which serve to build management applications for TINA-based PCS
components in any environment. The integration of those components into and
the design and implementation of management applications with graphical user
interfaces is part of this project.

3. [Abarca+97]
4. [Farley+97]
5. [Gamma+94]

Management
Toolset

Figure 1-2. Impacts on this Work

TINA
Service
Architecture 94

PCS in TINA
Concepts

Design
Patterns

CORBA JavaTANGRAM
DPE

Style
Guides

Technology Concepts

Technology

Design Concepts

Management
Applications

Guide to Readers Introduction

4

I have designed a three layer architecture in order to implement reusable and
easy to extend applications which are independent from any underlying system.

The exciting new movement in design patterns has had a major impact on this
project. The programming language I have used is Java, the new ‘Internet’ pro-
gramming language. I have demonstrated platform independence by imple-
menting an application programmer interface that can access a CORBA based
distributed environment platform.

1.3 Guide to Readers

This book consists of six parts. The first part introduces the basic concepts, prin-
ciples, and rules which I followed in designing and implementing my manage-
ment toolset for TINA-based components. The second part describes the design
of the toolset. Part three explains the implementation of the toolset. Part four
introduces the graphical user interface which allows the user to use the toolset in
an uncomplicated way. Part five draws some conclusions and suggests some
ideas for further extensions of the toolset. Finally, there is an appendix including
a bibliography, a glossary and an index.

The chapters are grouped into parts. A short description of the contents of
each chapter is given in the following sections.

Part One (Basic Concepts, Principles and Rules) describes the background
related to this thesis project. Chapter 2: Telecommunications Information Networking
Architecture gives an introduction to the Telecommunication Architecture
designed by the TINA-Consortium as far as is related to this project. Chapter
3: Personal Communication Support explains the personal communication support

TINA

PCS in TINA

TANGRAM

CORBA

Packages and
Classes

Dynamic
Model

Components

A
pp

lic
at

io
ns

 a
nd

 A
pp

le
ts

User Agent

Terminal
Equipment

Local Context

Registration
Server

Summary Future
Extensions

Deployment Guidelines
and Notations

Design
Patterns

References Glossary
Acronyms

Index

Part 1: Background

R
eq

ui
re

m
en

ts

Part 2: Design Part 3: Implementation User’s Manual

Figure 1-3. Structure of this Work

Part 5: Conclusion

Part 6: Appendix

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Overall
Architecture

Guide to Readers

5

concepts introduced into the TINA architecture by the TINA-C Auxiliary Project
Personal Communication Support in TINA. Chapter 4: The TANGRAM DPE in
Relationship to the PCS introduces the concepts of a TINA compliant DPE platform
which was used to evaluate the TINA architecture. Chapter 5: Common Object
Request Broker Architecture gives a brief introduction into the CORBA technology
which is necessary for understanding this work.

Part Two (Requirements and Design) delineates the design of the manage-
ment toolset. Chapter 6: Requirement Specification sketches what impacted my
design decisions. Chapter 7: Management Toolset Architecture outlines the architec-
ture that I applied to all the management toolset implementations. Chapter
8: Objects to be Managed presents the computational objects to be managed within
the range of this project. Chapter 9: Package Concepts and Design describes the orga-
nization of the modules in terms of packages. Chapter 11: Abstract Classes, Inter-
faces and Exceptions specifies the abstract classes which determine the overall
behavior for all of my toolset components.

Part Three (Implementation) details the classes which are part of the toolset.
Chapter 10: Package Usage Here I have listed the classes of each package and their
mapping for my design decisions on the informational viewpoint. Chapter
11: Abstract Classes, Interfaces and Exceptions lists and depicts all classes that I used
for the implementation of all managed objects. Chapters 13 to 16 specify the
classes used for the managed objects. Chapter 17: Utilities describes utility classes
which I designed and implemented especially for this project. Chapter
18: Graphical User Interfaces introduces the packages and classes which I used to
implement the graphical user interfaces. Chapter 19: Java’s Applications and Applets
characterizes the different aspects which I considered when designing and imple-
menting stand alone applications and applets—which can be used with WWW
browsers.

Part Four (Views–The Graphical User Interface) can be seen as a manual,
which describes the usage of the graphical user interface within the management
toolset. It consists of Chapter 20: User Data Management, Chapter 21: Terminal Equip-
ment Management, Chapter 22: Location and Location Context Management and Chap-
ter 23: Registration Management.

Part Five (Conclusion) The conclusion gives a summary of this thesis project,
and discusses proposals for further extensions.

Part Six (Appendix) consists of miscellaneous topics: Chapter 26: Deployment
gives useful hints on how to install and use the toolset applications, focusing on
the end-user side. On the other hand, Chapter 27: Programmers Guide, focuses on
the installation and usage of the management toolset from the programmer’s
point of view. In Chapter 28: Style Guide, the guidelines I used for structuring and
documenting, for naming conventions and recommendations, and for implemen-
tation are given. Chapter 29: Notations explains very briefly the used notation.
Chapter 30: Catalog of Applied Design Patterns introduces the design patterns used
in this project. Chapter 31: A Cookbook for Portable Clients—A Pattern System com-
piles the design decisions introduced in this thesis project into a ‘programmer’s
cookbook’ for implementing applications for distributed processing environ-
ments.

Map Through this Book Introduction

6

1.4 Map Through this Book

Figure 1-4 presents the map that accompanies this book. Each column represents
one part of the book, each box represents a chapter. At the beginning of each
chapter, the according column is displayed to indicate the location of the actual
chapter. The box representing the actual chapter is set in black typeface, the other
boxes, representing the remaining chapters, are set in grey typeface.

TINA

PCS in TINA

TANGRAM

CORBA

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

User Agent

TE-A

LCxt

Registration
Server

Summary

Outlook

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Background Design Implementation User’s Manual Conclusion Appendix

Figure 1-4. Map Through this Book

Par t 1

Basic
Concepts,

Pr inciples and
Rules

This Chapter describes the concepts, principles and rules which
guided this thesis project. It begins with background for the Tele-
communications Information Networking Architecture which
was introduced by the TINA Consortium. This is followed by an
introduction to the concepts of Personal Communication Sup-
port as developed by the TINC-C Auxiliary Project Personal
Communication Support in TINA. The TANGRAM DPE, a dis-
tributed processing environment, developed for evaluation of
the TINA-C Service Architecture, which is used in the context of
the PCS in TINA project, is presented in the following chapter.
Part one ends with an overview of the applied concepts of the
Common Object Request Broker Architecture technology.

User Agent

TE-A

LCxt

Registration
Server

Summary

Outlook

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation User’s Manual Conclusion Appendix

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design

TINA

PCS in TINA

TANGRAM

CORBA

Background

9

2 Telecommunications
Information Networking
Architecture

One major goal of the TINA-C initiative is the application of well-known con-
cepts within the computer science field to both future telecommunication services
and to traditional telecommunication services. Both types of applications are to
the purposes of supporting heterogeneous environments and hiding the com-
plexity of distributed computing. These concepts include software engineering,
object-oriented methodologies, distributed computing, and network management.

The first set of TINA-C documents, also called TINA Baseline Documents,
were finalized in 1993, a second set became available in the spring of 1995, fol-
lowed by several Stream Deliverable Documents which are also referred to as
Technical Proposals or TINA-C Reports.

This chapter gives an overview of those concepts and principles of TINA-C
that are used in the scope of this project and the PCS in TINA project it is based
on. It starts with an introduction into the TINA layered architecture, followed by
a description of TINA session concepts.

2.1 TINA Layered Architecture

TINA defines a telecommunications supportive software architecture which is
divided into four basic layers:

■ Telecommunication Applications Layer,
■ Distributed Processing Environment (DPE),
■ Native Computing and Communications Environment (NCCE),
■ Hardware Resource Layer.

The layering supports the need for an abstract view of resources and guaran-
tees their independence from the network infrastructure1. A short description of
the layers is given in the following sections.

2.1.1 TINA Applications Layer

The TINA Application Layer is the topmost layer. It contains a set of interacting
objects to build telecommunication services.

2.1.2 Distributed Processing Environment Layer

The Distributed Processing Environment Layer or the DPE layer lies under the TINA
Application Layer. It provides a technology independent view of computing
resources, which minimizes the technology-dependent aspects in application

1. [Handegård+96]

TINA

PCS in TINA

TANGRAM

CORBA

Background
Par t 1

TINA Session Concept Telecommunications Information Networking Architecture

10

software. The DPE allows for easier designing of applications, software re-use
and software portability. All of the above described capabilities help to hide the
complexity of a distributed environment and provide support for object location
and remote interaction.

The DPE is the layer where the computational objects are located.

2.1.3 Native Computing and Communications Environment

The Native Computing and Communication Environment (NCCE) is a software
layer, which lies under the DPE. It contains software-like operation systems, com-
munication and other supporting software.

2.1.4 Hardware Resource Layer

The hardware resource layer consists of hardware resources such as processors,
memory, and communication devices.

2.2 TINA Session Concept

A TINA session represents the purpose of a service which is achieved by perform-
ing a collection of activities during a temporal period. The following types of ses-
sions, which have been defined by TINA-C from the informational viewpoint,
will be explained below.

■ Access Session
■ Service Session
■ Communication Session

Figure 2-1. Basic Structure of Telecommunications Software in a TINA
Environment

DPE

Native Computing and Communications
Environment

Hardware Resources

TINA Applications

non-TINA
Applications

non-TINA
DPEs

Links to other
NCCEs

Links to other
Resources

Application Objects

Part 1: Requirements and Design TINA Session Concept

11

2.2.1 Access Session

The Access Session is the entrance to TINA telecommunication services for users.
It supports a user while accessing, requesting and retrieving any available service.
The Access Session supports services which are independent and exclusively ded-
icated to the user. It provides mechanisms to control the life-cycle of Service Ses-
sions, i.e. Service Session creation, suspension, resumption, and deletion. In
addition, the Access Session provides the personalization of services by adapting
the appearance of a service to the individual preferences of its user. The Access
Session aids various mobility aspects such as: personal mobility, terminal mobil-
ity, and session mobility. The preceding capabilities made the Access Session of
special interest to the PCS in TINA project. In fact it is solely the Access Session
which the PCS in TINA project enhances.

2.2.2 Service Session

A Service Session represents the actual usage of a service. It provides an environ-
ment to support the execution of a service for a user or a group of users. Service
sessions may consist of:

■ User (Service) Sessions and
■ a Provider (Service) Session.

User (Service) Session

A User (Service) Session represents the local view of a user as a participant of a
Service Session. It represents service customization and maintains user specific
resources. A User Session is created when a user joins a Service Session and is
deleted when he leaves it. User Service Sessions reflect the settings and con-
straints given by the user or his communication end-point, e.g. terminal limita-
tions.

Provider Service Session

A Provider Service Session expresses the global view on the service usage from a
provider’s perspective maintaining resources used by all participants. Both user
and Provider Service Sessions can make use of several Communication Sessions.

2.2.3 Communication Session

A Communication Session provides an abstract view of connection related
resources and supports the activities needed to establish the communication
between users. A Communication Session is service independent.

While Communication Sessions and Access Sessions are service independent,
Service Sessions representing service execution instances are service dependent
although parts of the Service Session can be modeled in a service independent
way. As depicted in Figure 2-2, an Access Session is able to maintain multiple Ser-
vice Sessions, and in turn each Service Session may use multiple Communication
Sessions.

Separation Aspects Telecommunications Information Networking Architecture

12

2.3 Separation Aspects

One purpose of this session concept is to achieve a separation of concerns,
another is to promote the distribution of processing. The separation of Access Ses-
sions and Service Sessions allows both the access methods and the technology
used by different users to vary. It also supports session mobility by, for example,
allowing the accessing users to change location while a service is in progress. The
separation of Service Sessions and Communication Sessions supports the division
of the service activity from the set of connections currently associated.

2.4 Processing Environment for Distributed
Objects

It must be possible for large software systems to interwork. This is a difficult task,
because one is then faced with many applications, developed by different design-
ers, distributed over long distances at various locations, which run on different
hardware systems and networks. One solution for the handling of such large sys-
tems is the usage of object-oriented technology. A distributed object-oriented
application is a set of interacting objects which are located at different hosts and
communicate via networks. In order to have a uniform approach, some mecha-
nisms to overcome the problems of heterogeneity, interoperability and transpar-
ency are needed. Some examples are: a standardized communications protocol,
an interface description language, procedures for setting up and closing connec-
tions, distribution mechanisms, and exception handling are therefore needed.

The goal of the Object Management Group (OMG) is to develop such mecha-
nisms. The OMG was founded to develop an open architecture for distributed
applications in heterogeneous environments using object-oriented software tech-

Communication Session

Service Session

Access Session

Communication Session

Communication Session

Service Session

T I M E

Access SessionAccess Session

Communication Session

Access Session

Communication Session

Service Session

Service Session

Communication Session

suspend resume

T I M E

Figure 2-2. Support of Multiple Communication Sessions in TINA

start stopstart stop

Part 1: Requirements and Design Summary

13

nology. The Object Management Architecture (OMA)2 specifies a reference model
for distributed applications called the Common Request Broker Architecture
(CORBA). It includes the Object Request Broker3 , the CORBAservices4 and the
CORBAfacilities5 . These items will be explained in Chapter 5.

2.5 Summary

The current implementation of the PCS-enhanced Access Session is based on the
TINA Service Architecture 2.0 which is also called Service Architecture 94 or SA
94.

In order to define more precisely the computing structure TINA deals with, it
distinguishes between several layers also called the basic structure of telecommu-
nications software in a TINA environment. The layers for telecommunications
applications and for Distributed Processing Environment are those relevant to
this project.

TINA distinguishes in its session concepts between different session types.
Among those sessions, the Access Session is the only one in which the PCS in
TINA concepts can be applied.

TINA Sessions are realized by computational objects which provide usage and
management interfaces; management interfaces being the one pertinent to the
management toolset in this project.

2. [OMG:Mgmt95]
3. [Orfali+96]
4. [OMG:Services95]
5. [OMG:Facilities95]

Summary Telecommunications Information Networking Architecture

14

15

3 Personal Communication
Support

The main targets of the PCS in TINA project are, the definition of a PCS-enhanced
Access Session by identification, specification and implementation of the new
PCS-related computational objects (COs) and the enhancement of already
defined COs related to the ‘basic’ TINA Access Session according to the PCS con-
cept.

This chapter gives an overview of the PCS concepts and thus briefly clarifies
which enhancements of the ‘basic’ Access Session have been necessary to realize
the PCS concept. The Information Model of a PCS-extended Access Session is
depicted at the end of the chapter.

3.1 Overview

The targeted functionalities that the PCS in TINA project aims to realize are: per-
sonal mobility support, the personalized control of reachability and user profile
management as described in the following sections.

For a better understanding of the various mobility aspects defined by TINA,
and supported by the TINA Service Architecture, I have given brief descriptive
explanations of the concepts, followed by a look at how the PCS concepts were
realized.

3.1.1 Personal Mobility Support

TINA defines the following types of mobility1:

■ Personal/Service/User Mobility enables a user to utilize a service ubiquitously—
independent of both the user’s physical location and specific equipment. Per-
sonal Mobility enables the invited user to be directly addressed using the
invited party’s user ID instead of addressing a terminal or other equipment
assumed to be with, or near to the user.

■ Terminal Mobility enables a terminal to be identified (by a unique terminal
identifier) and used independently of the point of attachment to the network
and its current location. The capabilities for locating, identification and vali-
dation of terminals must be provided by the network.

■ Session Mobility enables a Service Session to virtually ‘follow’ a participant,
independently of the user location, the terminal or of the access point to the
network. This implies that the session can be suspended and later on
resumed at a different terminal independent of changes in the equipment
used to support it.
The TINA Service Architecture supports various mobility aspects in the follow-

ing manner:

1. [Berndt+95]

TINA

PCS in TINA

TANGRAM

CORBA

Background
Par t 1

Overview Personal Communication Support

16

■ The support of personal mobility is realized within TINA by the application of a
unique user ID for the purpose of addressing an invited party. A proper ter-
minal or CPE, will be selected among those devices registered with by the
user. The TINA Service Architecture defines a Usage Context computational
object (UCxt) designed to contain registration information, that is, terminal
IDs and Network Access Points which are related to the user.

■ The support of terminal mobility is handled by the separation between Termi-
nal Equipment Agent (TE-A) and Network Access Point (NAP).

■ The support of session mobility is modelled as a part of the TINA session con-
cept including the strong separation between global and party (user) related
resources.
TINA considers the relationship between users, terminals and services to be

highly dynamic. The provision of services to an end user depends on the type of
terminal being used, the network access point being accessed and the set of ser-
vices being subscribed. To support mobility, it is necessary to assign unique iden-
tifiers to user and terminal agents, Network Access Points and Service Session
Manager COs.

The TINA overall session concept distinguishes between service and user
dependent session management, and maintenance. In order to support the pro-
vision of session mobility, a TINA-compliant system keeps the user relevant part
of a session (i.e., the User Session) in the User Session Management CO (USM) after
a session suspension. For a session resumption, the user session must be adapt-
able to a different end user system.

The PCS in TINA Auxiliary Project concentrates on personal mobility support
based on user registration at terminals (considered to be a basic capability of the
TINA Service Architecture) as well as on advanced support for personal mobility
based on user registration at locations.

Registration at Terminals

Here the term registration has two different but related meanings: (1.) it denotes
the association between a user and a terminal and (2.) it denotes the process of
establishing that association. The association between a user (or more precisely, a
user ID) and a terminal (i.e., Terminal ID/Network Access Point) has to be main-
tained by the system.

It should be noted that the TINA Service Architecture 2.0 was vague about
whether registration at terminals would be applied during the Access Session
when a Customer Premises Equipment (CPE) was to be selected for the invited
user or whether it would be applied by the Service Session. In contrast to the def-
inition of the TINA Service Architecture 4.0, where the user registration is consid-
ered to be part of the Service Session, PCS in TINA states, that user registration
should be part of the Access Session. This is based on the fact that the process of
identification and authentication will be performed very often. But, in the case of
a user only wanting to register without using a service, no resources are required
and therefore accounting is not absolutely necessary.

In the case of an invitation, the invited user will be alerted at a CPE/terminal
selected with the help of the terminal registration information. In order to support
user or personal mobility, the Service Architecture defines the Usage Context infor-
mational and computational object (UCxt), designed to contain registration infor-
mation such as terminals and network access points related to the user. This
object needed enhancements in order to interact with the newly introduced
objects (informational and computational).

Part 1: Requirements and Design Overview

17

The TINA Terminal Equipment Agent also needed enlargements which allow
for more flexible reactions to communication requests in the context of PCS.

Registration at Locations

Currently, TINA supports only the registration at terminals—TINA does not con-
sider registration at locations or scheduled registration. Registration at terminals
limits the set of usable terminals (e.g. CPE) to those the user manually registers
at. There is no implicit, transparent registration. This issue has been addressed by
the PCS in TINA project. The PCS-enhanced Access Session supports user regis-
tration at locations. Through user registration at locations, the system associates
users with specific well known locations (e.g., rooms or zones), thereby trying to
minimize the required user cooperation in order to keep the registration data up
to date. With personal mobility support being based on the PCS in TINA concepts
of registration at locations, the system is more flexible in selecting terminals
suited for the requested service types. The association of users with specific ter-
minals to be used is postponed to the moment of the arrival of invitations (i.e.,
incoming invitations), according to the availability of service specific terminals at
the registered location. This association (i.e., selection) can also be based on user
preferences.

The realization of registration at locations requires a representation of commu-
nication capabilities which are available at locations. Therefore, the informational
objects Location and Location capabilities have been newly introduced into the
TINA architecture, and were then realized by the computational object Local Con-
text, which contains the context of a user. Each Local Context has the references
to the TE-As at a specific location in the User Domain in order to allow the PCS-
enhanced CO Usage Context to find terminals related to this specific location and
therefore select an appropriate CPE.

To reflect location registration, the informational object User Location Registra-
tion has been also newly introduced, and then realized by the computational
object User Location. This object holds the current location information of one user.
It allows the (PCS-enhanced) UCxt to find terminals related to locations and
thereby to select an appropriate CPE. This is done by querying the LCxt to this
location.

An additional PCS-enhancement for registration is scheduled registration. For
scheduled registration, the object Registration Schedule2 (IO and CO) was intro-
duced. It allows a user to indicate at what time he will be reachable (terminal or
location). Note: the Registration Schedule allows CPE selection among registered
(available) CPE which the user is registered at (terminal or location). So the Reg-
istration Schedule is considered to be the completion of the Invitation Handling
Policy (realized by the CO Invitation Handling Logic, see below), which is person-
alized but independent of available terminals.

3.1.2 Control of Reachability

As a consequence of personal mobility and the resulting enhanced reachability,
the users must be protected from an omnipotent communication environment. A
personalized, automatic invitation handling (by a kind of electronic ‘secretary’) is
required to control and, if necessary, to restrict reachability in order to preserve
the user ’s privacy. The PCS-enhanced Access Session has been designed to pro-
vide service-control related capabilities for an automatic, personalized control of

2. This object’s name was changed and was before Personal Schedule (PS).

Overview Personal Communication Support

18

the invited user’s reachability. It is based on a user-defined policy which is
described in terms of rules on how invitation requests sent to a particular user
(agent,) should be handled (negative/positive communication filtering).

Using these service-control functionalities, a set of common service features
can be modeled and realized in the TINA Service Architecture, such as

■ Unconditional Invitation Forwarding,
■ Invitation Forwarding on (user) Busy / Don't answer,
■ Time Dependent Invitation Handling, and
■ Originating Invitation Screening.

The PCS in TINA project has introduced the Invitation Handling Policy as an
information object, which was realized by the CO Invitation Handling Logic. The
Invitation Handling Policy represents personalized reachability control which is
related to the PD_AccessSession3 as a computational object supporting the User
Agent. The TINA User Agent was enhanced in order to interact with the above
mentioned newly introduced components.

3.1.3 User Profile Management

The third area of abstract target functionality is related to user profile manage-
ment. In this area, the PCS in TINA project realizes capabilities allowing the user
to manually register at a terminal or location, to view and edit the Registration
Schedule, and to view and edit the Invitation Handling Logic. All of these three
areas of management functionality will be briefly described in the following sec-
tions.

In the TINA Service Architecture 2.0, the User Applications (UAPs) communi-
cate exclusively with the GSEP to access the PCS-enhanced Access Session. In the
current realization stage, there are also direct relationships between UAPs and the
Access Session. This may be reworked during the process of adapting to TINA
Service Architecture 4.0.

3. Provider Domain Access Session

GSEP The Generic Session End Point (GSEP) computational object is a service indepen-
dent computational object that models the capabilities needed to control Access
Sessions as well as a minimal set of capabilities to control Service Sessions. The
GSEP can be seen as the main client of the User Agent. It conveys every Access
Session related action initiated by the user from the User Application to the User
Agent. Due to its knowledge of provider domain objects, the GSEP may be seen
as an agent of service providers in the user domain. On the other hand, the GSEP
is the contact point for accessing components or devices in the user domain. Thus,
it is capable of delivering invitations by starting or notifying user applications
(UAP) in order to alert a user. According to the now available TINA Service Archi-
tecture 4.04, the GSEP functionality, will be supplemented by a new computa-
tional object called the Provider Agent (PA), which encapsulates the Access
Control capabilities of the GSEP5.

4. [Farley+97]
5. which is also referred to as GSEP95 in current TINA documents

Part 1: Requirements and Design Access Session Information Model

19

User Registration

User registration is the most important prerequisite for the provision of personal
mobility. Users have to make their current location or access terminal known to
the system in order to indicate to the system which terminal to select and use for
alerting and communicating in the case of incoming invitation requests. The PCS
in TINA Auxiliary Project provides a dedicated management functionality allow-
ing the user to register at locations as well as at terminals via a specific application
called Registration Management Application.

Invitation Handling Logic Management

The management of the user’s reachability in an environment of maximized
reachability is an important aspect of Personal Communications Support (PCS).
The project PCS in TINA provides dedicated management functionality allowing
the user to manage his own invitation handling. That is, the user will be enabled
to specify a personal policy that prescribes how to handle invitations. The user
must be enabled to define a policy which is kept in a personal rule base that allows
the system to automatically control who can reach the user, in what form to reach
the user (e.g. mail or interactive voice), and under what conditions. On the other
hand, the management of invitation handling also comprises functionality allow-
ing the user to store or re-direct incoming invitations if he is temporarily not
reachable or not able to handle an incoming invitation.

Registration Schedule Management

Registration Schedule Management comprises functionality allowing the user to
maintain and manage a network-stored schedule that serves for example as a fall-
back source of registration information. The schedule would indicate at what
location or terminal a user plans to be reachable. In the case that no other registra-
tion information (resulting from a manual registration at a terminal or location) is
available for a particular invited user, the registration schedule of that user will be
approached to provide a probable (i.e., planned) location or terminal address
where the user (presumably) can be reached.

3.2 Access Session Information Model

The information and semantics needed in the Access Session encompass flexible
access for users to the TINA system, independent of specific terminals.

The information objects of the Access Session can be divided into objects set-
tled in the user domain and objects settled in the provider domain (and some
objects in-between). This means that the responsibility for information contained
by these objects is divided.

The requirements for accessing TINA services by a user are represented by an
Access Session providing functions to the User it belongs to. The Access Session is
decomposed into zero or more User Domain Access Sessions (UD_AccessSession)
which deals with local information and one or more Provider Domain Access Ses-
sions (PD_AccessSession) which is mainly responsible for user admission. The
object Access Application represents the semantics necessary in the user domain for
performing a customized Access Session. The link attributes Identification and User
Identification model the information necessary to authenticate the user of a func-
tion. The user needs Identification information for a local logging and User Iden-
tification information for accessing the TINA Network.

Access Session Information Model Personal Communication Support

20

Figure 3-1. PCS–Enhanced Access Session Information Model

ServiceProfile

SessionDescription

UD_AccessSession

UserTerminalRegistration

NetworkAccessPoint

NetworkTerminal

TerminalAccessPoint

Terminal

TerminalIdentification

AccessApplication

User

Identification

AccessSession

UserIdentification

PD_AccessSession

InvitationHandlingPolicy

checks

checks

isRepresentedBy

isLinkedTo

checksisRepresentedBy

at

LocationCapability

checks
UsageContextLocation

UserLocationRegistration

checks

isSupportedBy

isAttachedTo

1+

1+1+1+

RegistrationSchedule

User Domain Provider Domain

21

4 The TANGRAM DPE in
Relationship to the PCS

This section presents the concepts, services and interfaces of the TANGRAM Dis-
tributed Processing Environment used within the scope of PCS in TINA.

4.1 Introduction

TINA-C defines TINA compliant distributed processing environments in detail
in the TINA Baseline TINA Distributed Processing Environment1. In order to realize
it’s concepts, the PCS in TINA project chose the TANGRAM DPE which is a TINA-
C compliant platform.

The TANGRAM DPE provides some development and runtime support for
distributed telecommunication services. It supports the basic DPE object services,
and is implemented using the commercially available CORBA 2.0 technology of
IONA Orbix2 and HP Distributed Smalltalk3,4. The underlying transport network
(NCCE5) is represented by an Ethernet using TCP/IP or ATM. A part of this the-
sis project was the design and implementation of an API, which allows computa-
tion objects with in the TANGRAM DPE to be accessed.

For a better understanding—in particular of the API which I have imple-
mented—this chapter will give a more detailed, engineering viewpoint oriented
description of the concepts of the TANGRAM DPE than has been given in the
proceeding chapters.

1. [Leydekkers+95]
2. [IONA94]
3. [HP95]
4. [HP95a]
5. See “Native Computing and Communications Environment” on page 10.

TINA

PCS in TINA

TANGRAM

CORBA

Background
Par t 1

Figure 4-1. The TANGRAM DPE

TCP/IP via Ethernet or ATM

Application A Application B Application C

CORBA 2 with
HP Distributed Smalltalk

CORBA 2 with
Java CORBA

CORBA 2 with
IONA Orbix (C++)

Implementation

General Concepts The TANGRAM DPE in Relationship to the PCS

22

4.2 General Concepts

Distribution
Transparency

The description of an abstract infrastructure, which enables the execution of TINA
applications, is called the TINA Distributed Processing Environment (DPE). The
Distributed Processing Environment supports the execution of distributed tele-
communication applications. It is a platform on which distributed applications,
like a multimedia communication service, can operate. The DPE provides distri-
bution transparency and is an infrastructure which consists of interconnected
DPE nodes.

The DPE node is under control of a DPE kernel which is an abstraction of the
NCCE. A DPE node consists of a number of capsules which can also consist of a
set of object groups called clusters. The communication mechanism needed
between different clusters uses the concept of channels. The DPE offers a number
of functionalities from the engineering viewpoint which are needed to support
the distributed applications6,7,8. The DPE provides distribution transparency,
allows object interactions and supports the object life-cycle. This is accomplished
by a variety of services. The Object Management Group (OMG) defines a DPE in
the Object Management Architecture (OMA) called the Common Object Request
Broker (CORBA)9. The TANGRAM DPE uses the CORBA technology.

6. [Graubmann+94]
7. [Leydekkers+95]
8. [Leydekkers+95a]
9. [OMG:ORB95]

Client

ORB

TANGRAM
DPE

Figure 4-2. Usage of Different ORB Domains in TANGRAM

ORB IIOP

HP Distributed
Smalltalk Imple-
mentation

C++ Implemen-
tation

Server

Part 1: Basic Concepts, Principles and Rules General Concepts

23

Interfaces

Every object in TINA can have more than one interface. In contrast, a CORBA
object has only one single interface. To reconcile this conflict, TINA objects must
be mapped to a number of CORBA objects. That means, that each interface is rep-
resented by a CORBA object. Furthermore, there is one CORBA object which rep-
resents the core TINA object10.

Core TINA Objects

CORBA defines one interface per object, i.e. the object is the interface. In TINA
one Computational Object can have multiple interfaces. To make this possible,
one TINA object must be mapped to a set of CORBA objects. One Basic Engineer-
ing Object (BEO) consists of a number of interface objects and one core object
which realizes the semantics defined by the CO specification.

The TANGRAM DPE supports the basic DPE object services, described in
Chapter 5 and is implemented using the commercially available CORBA 2.0 tech-
nology of IONA Orbix11 and HP Distributed Smalltalk12. The different applica-
tions use one or more of these CORBA-implementations. The underlying
transport network (NCCE) is represented by an Ethernet using TCP/IP or ATM.
Figure 4-1 shows the TANGRAM platform as a DPE in a TINA compliant envi-
ronment.

10. [Eckert96]
11. [IONA95]
12. [HP95a]

Figure 4-3. Mapping of TINA Computational Objects to CORBA Objects

Core
Object

Interface
Object

Interface
Object

Interface
Object

Interface
Object

Computational Object

Computational Object

Engineering Computational Object

TANGRAM Services The TANGRAM DPE in Relationship to the PCS

24

4.3 TANGRAM Services

The CORBA Services used in the TANGRAM project are

■ Naming Service,
■ Life Cycle Service and Relationship Service.

Repositories These services are supported by two kinds of repositories: the Interface Reposi-
tory and the Implementation Repository. The Interface Repository provides persis-
tent storage of interface definitions specified in IDL. The Implementation
Repository maintains the information that allow the system to locate and activate
implementations of objects13.

Naming Service

The Naming Service is used to obtain the interface references of a specific CO
from within the system. It is implemented using HP-DST 5.0 and has an interface
specified in IDL, so it can be used by different ORBs, such as for example Orbix.
Since the version 2.0.1 of IONA’s Orbix used in this project does not offer a Nam-
ing Service, the CORBA-conform Naming Service of HP-DST is used to provide a
common Naming Service in the TANGRAM DPE14.

The root context of the Naming Service is TANGRAM, which contains the con-
text ConfigurationManager containing the Configuration Managers of the different
sessions. From the different Configuration Managers the corresponding session
objects can be accessed. As there may be several objects of one kind (e.g. various
service sessions for one user or various User Agents in one Access Session), each
object is also identifiable by a unique name. Figure 4-4 shows the TANGRAM
Naming Graph with the corresponding sessions objects15.

13. [OMG:ORB95]
14. [Schoo+96]
15. [Schoo+96]

IOR

As the Naming Service usually resides in the Provider Domain, it represents
the entry point for accessing the components of this domain. In order to allow the
utilization of these components, the IOR of the Naming Service has to be stored
in a well known file, so that it may be transferred to another domain (e.g. to the
User Domain via ftp). Each component that will be added to a domain (such as,
for example, the Registration Server) has to register one or more of its interfaces
at the Naming Service in order to be accessible for other components.

Figure 4-4. The TANGRAM Naming Graph

Tangram
Configuration
Manager

Access Session

Accounting

Communication Session

Service Session

Subscription
Object

Naming Context

Part 1: Basic Concepts, Principles and Rules TANGRAM Engineering Concepts

25

Life Cycle Service

The Life Cycle Service together with the Naming Service support location trans-
parency, which provides a logical view of naming, independent of the actual
physical location of the object16.

The TANGRAM DPE provides objects which serve for the life-cycle of Compu-
tational Objects. The Configuration Manager (CM) is responsible for a group of COs
which can be assigned together. The Life Cycle Manager (LCM) manages the life-
cycle of the instances of one specific Computational Object type. These managers
and their interfaces will be explained in the next section. Figure 4-5 shows the
CM, LCM and the associated CO-types.

The Relationship Service of the TANGRAM DPE is implemented using HP-
DST and is not compliant to the CORBA standard17. Since it offers an IDL-inter-
face, it may also be used by other ORBs. Note that this service is only used by one
type of PCS in TINA COs, the Invitation Handling Logic.

4.4 TANGRAM Engineering Concepts

This section describes the interfaces of the objects responsible for configuration
management, life-cycle management and the control of COs. These interfaces
may be considered as template classes, which are inherited by the CO-classes.
The implementation of the inherited methods is then class-specific. This mecha-
nism ensures that the various COs can be accessed in a uniform way.

16. [Schoo+96]
17. [HP95a]

T
ype A

 B
E

O
s

I_ALcm

CO type A

I_ABCCm

createABC
terminate
getIntRefs
selectIntRef

Configuration
Manager for ABC-

Life Cycle
Manager A

T
ype B

 B
E

O
sI_BLcm

CO type BLife Cycle
Manager B

T
ype C

 B
E

O
sI_CLcm

CO type CLife Cycle
Manager C

related COs

I_CLcm

create
init
terminate
getIntRefs
selectIntRef

Figure 4-5. The TANGRAM Configuration and Lifecycle Managers

TANGRAM Engineering Concepts The TANGRAM DPE in Relationship to the PCS

26

The definition of the above described types, structures and methods is found
in the file i_TnManagers.odl, which is included by the CO-classes of PCS in TINA.
For a complete ODL-listing refer to Appendix A in the PCS in TINA Report 218.

4.4.1 Common Data Types

The following data types are used by the TANGRAM DPE.

T_CompObjectType

The enumeration type T_CompObjectType enumerates all the computational
objects available. These are, for example, TnUserApplication defining a User
Application or TnPcsLocalContext defining the PCS Local Context (LCxt).

T_CoIntRefList

The sequence T_CoIntRefList represents a list of CO interface references
(T_CoIntRef), each reference consisting of a pair: the interface type
(T_InterfaceType, a CORBA Repository ID represented as a string) and the refer-
ence to this interface (T_IntRef, represented as a CORBA object). This list is
returned when the interfaces of a CO are requested.

T_IntRefList

The sequence T_IntRefList represents a list of interface references of a collection
of COs. Each element (T_CoIntDescr) consists of the type of the CO
(T_CompObjectType) and the associated list of references (T_CoIntRefList). This
list is returned when the create-operation of a Configuration Manager is called
(see below).

Exceptions

Additionally, an exception is defined, which may be raised by every method
described in the following section. The exception E_TnNotYetImplementedError
informs the calling party, that the invoked method has not yet been implemented.

4.4.2 Configuration Manager

The Configuration Manager (CM) is responsible for creating, terminating and
requesting the interfaces of the Computational Objects belonging to the Configu-
ration Managers. It registers itself at the Naming Service. Objects that want to use
the services offered through the interfaces have to retrieve the specific CM inter-
face reference through the Naming Service.

18. [Arbanowski+96a]

AccessSession
Configuration
Manager

Environment
Configuration
Manager

In the Access Session two different types of Configuration Managers are
implemented. One CM is responsible for COs which are associated with a specific
user. This CM is called AccessSession Configuration Manager (AssCm). The other
CM deals with the COs which represent environment objects. This CM is called
the Environment Configuration Manager (EnvCm). Every CM knows its own Life
Cycle Managers, which are explained below. The definition of the interface of the
CM template Manager (I_ConfigurationManager) is also given below.

Part 1: Basic Concepts, Principles and Rules TANGRAM Engineering Concepts

27

Interface Definitions

The CM-interface defines four methods which have to be implemented by the
inheriting class. One method is class-specific (i.e. its parameters are specific to
each CO-class) the other three are general ‘virtual’ methods.

The class-specific method is the create method, which is called whenever an
object requests the creation of an instance of the class(es) for which the CM is
responsible. It requires at least two parameters plus some class-specific parame-
ters. The required parameters are:

■ the instance name of the type T_InstanceName, which is the TANGRAM
external representation of an entity, as input parameter

■ the ID for the created entity of the type T_InstanceId, which is the TAN-
GRAM internal representation of an entity, as inout parameter
As a result, the method returns the list of all interface references(T_IntRefList),

or raises an exception (either factory or naming).

The three general methods are:

■ terminate: stops execution of the CO-instance with the given instance ID and
removes it or raises a naming exception if it does not exist.

■ getIntRefs: returns the list of interface references (T_CoIntRefList) of the
requested CO type and instance ID or raises a naming exception if it does not
exist.

■ selectIntRef: returns the interface reference (T_IntRef) to the requests CO-
type and interface-type with the given instance ID or raises a naming error.
The interface declares its own exceptions for two categories of faults: those

concerning the creation and deletion of COs (factory exceptions -
E_CmFactoryError) and those concerning the naming/retrieval of COs (naming
exceptions - E_CmNamingError).

Factory Exception Codes

The factory exception codes (T_CmFactoryExceptionCodes) are:

■ CmNamingConflict, (some) COs with the same name are already existent
■ CmTooManyCOs, there are insufficient (system) resources
■ CmNoSuchCO, the requested CO (i.e. the type) is not existent
■ CmNoSuchInstance, the requested CO-instance (identified through an ID) is

not existent
■ CmNoSuchInterface, the requested interface for a CO is not existent
■ CmInvalidInitParams, the given initialization parameters for the creation of a

new CO-instance are not valid.
The naming exception codes (T_CmNamingExceptionCodes) raised are:

■ CmUnknownCO, the requested CO is unknown
■ CmUnknownInstance, the requested CO-instance (identified through an ID)

is unknown
■ CmUnknownInterfaceType, the requested interface type for a CO is not

known

TANGRAM Engineering Concepts The TANGRAM DPE in Relationship to the PCS

28

4.4.3 Life Cycle Manager

The interface I_LifeCycleManager is defined by the TANGRAM DPE and repre-
sents a template for factory functionalities needed to control and enable the cre-
ation, deletion and initialization of objects19,20. It is intended to standardize the
interfaces of the COs used on the TANGRAM platform in order to facilitate their
interactions. For each CO-class, there is a Life Cycle Manger (LCM), which is
derived from this template interface. That means, each LCM is responsible (i.e.
provides the factory functionalities) for exactly one CO-type. Like the CM-inter-
face, the LCM-interface defines its own exceptions and data types.

A read-only attribute of the type T_CompObjectType represents the type of
CO for which the LCM is the factory.

Interface Definitions

The interface defines five methods, where one is class-specific (i.e. the parameters
are specific for this class).

The class-specific method is the initialization (init) method, which is called
after the creation of a CO-instance. It requires at least two parameters plus some
class-specific parameters. The required parameters are:

■ the instance ID (type T_InstanceId) of the CO which will be initialized
■ The list of required interfaces for this CO of the type T_IntRefList

The four general methods are:

■ create: creates an instance of the CO-class with the given name (T_InstanceId)
and returns the list of interface references (T_CoIntRefList) if the creation was
successful, otherwise it raises a factory exception. The init-method may be
called immediately after the creation.

■ terminate: stops execution of the CO-instance with the given instance ID and
removes it or raises a factory exception if it is not existent.

■ getIntRefs: returns the list of interface references (T_CoIntRefList) of the
requested CO instance or raises a naming exception if it is not existent.

■ selectIntRef: returns the interface reference (T_IntRef) to the requested inter-
face-type with the given instance ID or raises a naming error.
Except for the create-method, all above explained methods are mapped to the

methods of the same name which are declared in the I_CoControl interface
described in the next section.

Factory Exception Codes

The interface declares its own exceptions for two categories of faults: those con-
cerning the creation and deletion of COs (factory exceptions -
E_LcmFactoryError) and those concerning the naming/retrieval of COs (naming
exceptions - E_LcmNamingError).

The factory exception codes (T_LcmFactoryExceptionCodes) are:

■ LcmTooManyCOs, there are insufficient (system) resources
■ LcmNoSuchInstance, the requested CO-instance (identified through an ID) is

not existent
■ LcmAlreadyExistingInstance, a CO-instance with the given ID already exists

19. [Eckert96]
20. [Schoo+96]

Part 1: Basic Concepts, Principles and Rules TANGRAM Engineering Concepts

29

■ LcmNoSuchInterface, the requested interface for a CO is not existent
■ LcmConfigurationFailure, the configuration of the CO failed
■ LcmInvalidInitParams, the given initialization parameters for the creation of

a new CO-instance are not valid.

Naming Exception Codes

The naming exception codes (T_LcmNamingExceptionCodes) raised are:

■ LcmUnknownInstance, the requested CO-instance (identified through an ID)
is unknown

■ LcmUnknownInterfaceType, the requested interface type for a CO is not
known

4.4.4 Computational Object Control Interface

I_CoControl
interface

As explained above, a CO may have more than one interface. Each of these inter-
faces will then be represented (and also instantiated) as an independent object
internally, whereas externally this fact is transparent. All interface(-objects) form-
ing an object with multiple interfaces are controlled by the so called core-object.
The core-object is responsible for the creation of each of the interface objects upon
request and also for their destruction. For these purposes, it offers the
I_CoControl interface which is used by the LCM-interface. In fact, most of the
methods defined in the LCM-interface are mapped to the methods defined in this
interface21. Figure 4-6 depicts the creation of an object instance.

A read-only attribute of the type T_CompObjectType represents the type of
CO which is controlled.

21. [Schoo+96]

Figure 4-6. Creation of an Object Instance

LifeCycle
Manager

Core
Object

Interface
Object

Interface
Object

Interface
Object

Interface
Object

Computational Object

CoControl

Computational Object

Engineering Computational Object

create

TANGRAM Engineering Concepts The TANGRAM DPE in Relationship to the PCS

30

Interface Definitions

The interface defines five methods, where one is class-specific (i.e. the parameters
are specific for this class). The class-specific method is the init method, which is
called after the creation of a CO-instance.

The four general methods are:

■ create: creates an instance of the CO-class with the given CO-type
(T_CompObjectType) and returns the list of interface descriptions
(T_CoIntDescr) if the creation was successful, otherwise it raises a factory
exception. The init-method may be called immediately after the creation.
Note: The specification of the CO-type to be created is redundant in this con-
text, as the request for creation came from a LCM, and each LCM is only
responsible for the management of one type of COs.

■ terminate: stops execution of the CO-instance and removes the interface
object as well as the core object (i.e. itself).

■ getIntRefs: returns the list of interface references (T_CoIntRefList) of the CO
instance or raises a naming exception if not existent.

■ selectIntRef: returns the interface reference (T_IntRef) to the given interface-
type of the CO or raises a naming error.

Exceptions

Like the CM- and the LCM-interface, the COControl-interface defines its own
exceptions for factory (E_CoFactoryError) and naming (E_CoNamingError)
errors.

The factory exception codes (T_CoFactoryExceptionCodes) are:

■ CoTooManyCOs, there are insufficient (system) resources
■ CoNoSuchInterface, the requested interface is not available for this CO-class
■ CoConfigurationFailure, an error occurred during the configuration of the

CO
■ CoInvalidInitParams, the passed parameters for the initialization of the CO

are invalid
The only naming exception code(T_CoNamingExceptionCodes) is:

■ CoUnknownInterfaceType, the type of interface is unknown for this CO-class

4.4.5 Access Session Configuration Manager

The Access Session Configuration Manager (AssCm) looks for the following user
specific COs:

■ UA,
■ UCxt,
■ ULoc,
■ PPrf,
■ PCL,
■ PS,
■ Authentication and
■ Session Description.

Part 1: Basic Concepts, Principles and Rules TANGRAM Engineering Concepts

31

All these objects are highly user related and represent the user and his prefer-
ences.

Each user of the system has one unique identifier. Figure 4-7 shows the AssCm
with its Life Cycle Managers and the objects which are handled by the LCMs.

ULoc-LCM

I_ULocLcm ULoc

Auth-LCM

I_AuthLcm Auth

Access Session
Configuration Manager

User Agent

UA-LCM

I_UaLcm

UCxt-LCM

I_UCxtLcm UCxt

U
ser related B

asic E
ngineering O

bjects (selected)

Figure 4-7. Engineering Viewpoint on Management

Management

Applications

Location B
E

O
s

P
C

S
 T

erm
inal

TEA-LCM

I_PCSTeaLcm PCS
TE-A

LCxt-LCM

I_LCxtLcm LCxt

Environment
Configuration Manager

Naming
Service

B
E

O
s

TANGRAM Engineering Concepts The TANGRAM DPE in Relationship to the PCS

32

33

5 Common Object Request
Broker Architecture

This chapter gives an introduction to the Common Object Request Broker Archi-
tecture (CORBA) as far as is necessary for the understanding of this project. The
CORBA is used in the realization of the TANGRAM DPE to support distributed
processing.

5.1 Introduction

An OMG compliant Object Request Broker (ORB) serves as a bus for the transport
of requests from a client to a server in distributed processing environments. The
ORB relays the invocation from the client to the object implementation on the
server side and then relays the result back to the client. The ORB is responsible for
locating the object implementation and for transporting the data from the client
to the server independent of location, implementation and host. It lets objects
send requests transparently to other locally or remotely located objects. The ORB
is able to locate the specific object and the interface needed to operate the request.
The answer to the request retraces its steps in reverse through the ORB to the cli-
ent. The request is made via a dynamic invocation interface or a stub. The inter-
face definition language (IDL), describes the interface between the client and the
server. The object adapter is the interface between the ORB core and the object
implementation1.

5.2 CORBA Components

A Common Object Request Broker Architecture (CORBA) consists of the follow-
ing components:

■ Object Request Broker
■ Application Objects
■ Common Facilities
■ Common Object Services

5.2.1 Application Objects

Application Objects are components specific to end-user applications which rep-
resent an enterprise model. An application is typically built from a number of
cooperating business components that together, serve a specific purpose. These
application objects are built on top of services provided by the ORB, the Common
Facilities and the Common Object Services.

1. More details can be found in [OMG:ORB95].

TINA

PCS in TINA

TANGRAM

CORBA

Background
Par t 1

Object Services Common Object Request Broker Architecture

34

5.2.2 Common Facilities

Common Facilities are a collection of components that provide services for direct
use to applications objects. OMG defines two categories of Common Facilities:

■ Horizontal Common Facilities2

■ Vertical Market Facilities
The horizontal set of Common Facilities includes functions shared by many or

most systems, regardless of the type of content the application has.

The vertical set of Common Facilities (Vertical Market Facilities) represents
standards for interoperability in particular specialty areas, e.g. Computer Inte-
grated Manufacturing (CIM). Each speciality area represents the needs of an
important computing market. There is no limitation on the amount of Vertical
Market Facilities.

5.2.3 Common Object Services

CORBA Object Services are collections of system-level services. CORBA Object
Services are described in more detail in the following section.

5.3 Object Services

CORBA Object Services extend and complement the functionality of the Object
Request Broker. CORBA object services are used to create a component, to name
it and to introduce it into the environment3.

2. OMG defines four Horizontal Common Facilities: User Interface, Information Management,
Systems Management and Task Management

3. [Orfali+96]

Figure 5-1. Common Object Request Broker Components

Application Objects Common Facilities

Common Object Services

Object Request Broker

Part 1: Basic Concepts, Principles and Rules Object Services

35

The following services are defined as standards by OMG4. Services in bold
typeface are used in the context of the PCS in TINA project and are described
below.

■ Naming Service
■ Event Service
■ Life Cycle Service
■ Persistent Object Service
■ Transaction Service
■ Concurrency Control Service
■ Relationship Service
■ Externalization Service

Note, that the underlying platform of the present implementation only makes
use of the following CORBAservices, which are explained in the next sections:

■ Naming Service,
■ Relationship Service,
■ Lifecycle Service.

5.3.1 CORBA Naming Service

The Naming Service defines conventions for binding a name to an object relative
to a naming context. Names are humanly recognizable values that identify an
object. Names can be passed to other objects. Objects can address the naming ser-
vice and resolve the name in a given context. The naming service allows the cre-
ation of naming hierarchies. Clients can navigate through different naming
context trees in search of a specific object. Name contexts from different domains
can be used together to create federated naming services for objects. A CORBA
naming hierarchy does not require a ‘universal’ root5,6 .

5.3.2 CORBA Relationship Service

Objects of the real world do not exist in isolation. They build relationships that
come and go. Therefore a system, modelling the real world should provide a way
to create relationships between objects that could be dynamic, static or created ad
hoc. The CORBA Relationship Service allows the creation of relations between
objects that do not know of each other and therefore do not have to keep track of
existing relationships between themselves and other objects. The Relationship
Service provides a way to create relationships between immutable objects7.

The CORBA Relationship Service allows entities and relationships to be
explicitly represented. Entities are represented as CORBA objects. OMG defines
two kinds of objects:

■ Relationships and
■ Roles.

4. [OMG:Services95]
5. [Orfali+96]
6. [Schoo+96]
7. [Orfali+96]

The Inter-ORB Communication Architecture Common Object Request Broker Architecture

36

A role represents a CORBA object in a relationship. A compound object is a
structure of objects which are linked together and appear to be a single object. It
may consist of several CORBA objects. Any life-style request applied to the com-
pound object affects the entire cluster of CORBA objects. Clients are unaware of
the implementation of objects they interact with and link to. They may apply a
‘delete’ request to a compound object to delete an entire cluster of objects includ-
ing their relationships.

5.3.3 CORBA Life Cycle Service

OMG defines the Life Cycle Service as follows:

The CORBA Life Cycle Service defines services and conventions for
creating, deleting, copying and moving objects. Because CORBA-
based environments support distributed objects, the Life Cycle Serv-
ice defines conventions that allow clients to perform life cycle oper-
ations on objects in different locations8.

In CORBA 2.0 the Life Cycle Service was expanded to handle associations
between groups of related objects, which include containment and reference rela-
tionships. The Relationship Service is used to define these relationships. The Life
Cycle Service provides interfaces that are derived from the Relationship Service9.

5.4 The Inter-ORB Communication Architecture

The implementation of the TANGRAM DPE, which is used in the PCS in TINA
project, makes usage of different ORBs. Therefore it is necessary to have a closer
look to the concepts which define the communication between different ORB
implementations of different vendors.

For communication between different ORB implementations, OMG defines
special protocols. These protocols are the Internet Inter-ORB Protocol (IIOP) and
the Environment-Specific Inter-ORB Protocol (ESIOP). The later is not used in
this implementation and therefore is not described. To pass object references
between different ORB implementations, OMG defined the Interoperable Object
Reference or IOR.

Since the version 2.0 of CORBA, the interoperability between ORBs of differ-
ent vendors is defined by specifying a mandatory Internet Inter-ORB Protocol.
The IIOP is basically TCP/IP with some CORBA-defined message exchanges that
serve as a common backbone protocol. To be considered CORBA compliant, an
ORB must either implement IIOP natively or provide a ‘half-bridge’10 to it.11

The following sections will give a short description of this terms.

8. [OMG:Services95]
9. [Orfali+96]
10. half-bridge because IIOP is the ‘standard’ CORBA ORB.
11. [Orfali+96]

Part 1: Basic Concepts, Principles and Rules The Inter-ORB Communication Architecture

37

5.4.1 GIOP

For the communication between ORBs, a specially built protocol is set forth; the
General Inter-ORB Protocol (GIOP). It specifies a set of message formats and com-
mon data representations for the Inter-ORB communication. GIOP is designed to
work directly over any connection-oriented transport protocol and defines seven
message formats that cover all the ORB request and reply semantics. Therefore,
no format negotiations are needed.12

5.4.2 IIOP

The Internet Inter-ORB Protocol (IIOP) specifies how GIOP messages are
exchanged over a TCP/IP network. The IIOP makes it possible to use the Internet
itself as a backbone ORB through which other ORBs can bridge. To be CORBA 2.0
compliant, an ORB must support GIOP over TCP/IP or connect to it via a half-
bridge.

12. [Orfali+96]

Figure 5-2. CORBA Inter-ORB

CORBA
IDL

General Inter-ORB
Protocol (GIOP)

Environment Specific
Inter-ORB Protocols
(ESIOP)
DCE/ESIOP

Internet
Inter-ORB
Protocol
(IIOP)

TCP/IP

Others
for
example

OSI
and
IPX/SPX

DCE RPC
over
TCP/IP

DCE RPC
over
OSI

etc.…

Transports

Transfer and Message Syntax

Object Request Semantic

Internet

Mandatory for CORBA 2.0

Optional

The Inter-ORB Communication Architecture Common Object Request Broker Architecture

38

5.4.3 IOR

GIOP also defines a format for Interoperable Object References (IORs). To pass an
object reference between ORBs, an IOR must be created. An IOR describes how
an object is to be contacted using a special ORB mechanism. An IOR includes self-
describing data that identifies the ORB domain to which a reference is associated
and the protocols it supports.13

13. [Orfali+96]

Par t 2

Requirements
and Design

This portion of the book presents the design of the management
toolset. It starts with the requirement specifications for this
project. Next, the overall architecture of the toolset is introduced
followed by a chapter about the design of the managed objects.
This part closes with a description of the package subdivision of
the architecture and the delineation of the design of the overall
objects.

TINA

PCS in TINA

TANGRAM

CORBA

User Agent

TE-A

LCxt

Registration
Server

Summary

Outlook

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Background Implementation User’s Manual Conclusion Appendix

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design

41

6 Requirement Specification

6.1 Introduction

The TINA-C Auxiliary Project PCS in TINA (PCS in TINA) introduces personal
mobility supporting aspects into the TINA-C Service Architecture. The objectives
of the PCS in TINA project are to enhance and extend the TINA Access Session by
concentrating on the management of reachability. Thus, by providing the user
with capabilities for a personalized invitation management, the user is able to
manage his or her own reachability in a uniform and efficient way, abstracting as
much as possible from technicalities.

To achieve this goal, PCS in TINA had to introduce new computational objects
into the TINA-C Service Architecture (SA 94)1 and to enhance existing ones.

The following computational objects have been enhanced or newly intro-
duced by PCS in TINA into the TINA-C Architecture (cf. Figure 6-1):

■ PCS User Agent (PCS-UA)
■ PCS Usage Context
■ PCS Terminal Agent (PCS-TE-A)
■ PCS Personal Schedule
■ PCS User Location
■ PCS Local Context.

1. The PCS in TINA project is based on the TINA-C Service Architecture 94. Since beginning this
thesis project the fall of 1996, TINA-C has delivered a revised Service Architecture, called SA
96.

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design
Par t 2

Terminal Equipment

Association between
Terminals and a Location

user
registration
at location

user
registration
by schedule

TE-ATE-A
PCS-TE-A

Personal
Call Logic

PCS

Personal
Schedule

PCS

User
Location

PCSUsage
Context

PCS-

Association between

user
registration
at location

Terminals and a LocationLocal
Context

user
registration
by schedule

ACCESS SESSION COS

PCS

PCS-UA

Figure 6-1. PCS Enhancements to the TINA Access Session

Terminal Equipment

TE-A
PCS-TE-A

Dark shaded boxes represent computational objects
which have been introduced into the Service Architec-
ture 94.

Light shaded boxes are enhanced computational objects

Objective of this Work Requirement Specification

42

These computational objects have to be managed in compliance with the
TINA standards, i.e. they must be accessed at their provided management inter-
faces.

6.2 Objective of this Work

The objective of this work is to design and implement a management toolset
which is to be used by the management applications for the following PCS com-
putational objects:

■ PCS User Agent
■ PCS Terminal Agent
■ PCS Local Context.

An other central objective is the design and implementation of a management
application for the Registration Server Management.

Technical Requirements

The following technical requirements had to be fulfilled:

■ The computational objects are located in a TINA Service Architecture 94 com-
pliant distributed processing environment (DPE).

■ The required DPE is the TANGRAM DPE.
■ The TANGRAM DPE uses the Common Object Request Broker Architecture

(CORBA) technology. Therefore, the management toolset has to communi-
cate with computational objects via their CORBA Interface Definition Lan-
guage (IDL) interfaces using an Object Request Broker (ORB).

■ Different ORB domains are supported by the TANGRAM DPE. Therefore,
CORBA IIOP concepts must be considered.

■ Design and implementation must be object-oriented.
■ The management toolset should be available on different operating systems,

therefore;
■ The programming language is Java.
■ To access the ORB, the Visigenic Visibroker for Java has to be used.
■ Graphical user interfaces must be provided as end-user front ends.
■ Different kinds of end-user types (beginner, expert, secretary, administrator,

etc.) need different access controls which should be customizable.
■ Reusability and maintainability should be considered.
■ The possibility to access different platforms (e.g. ORACLE Database) should

be provided.
To manage the computational objects means, to use the provided facilities of

that platform and its embedded objects. The management toolset has to offer the
functionality to create, modify and delete these computational objects. Those
functionalities must be available from within management applications.

Part 2: Requirements and Design Objective of this Work

43

Target Group

The target group for these management applications, are experienced system
administrators, as well as end-users who simply want to configure computational
objects within their system. Each component has to be managed independently—
that means that each component is managed with its own independent applica-
tion.

Therefore, one aspect of this project is to provide applications with graphical
user interfaces which faciliate customer access to the management services pro-
vided by the PCS components. The guiding intention during the design process
was, that the graphical user interfaces (GUIs) should provide state of the art qual-
ity and userfriendly access to the underlying management functions. On the one
hand, these GUIs must hide the complexity of the system providing an intuitive
management of the components, and on the other, they must give an advanced
user full control over the managed components.

Platform Independence

Another design criteria was the aspect of independence from an underlying plat-
form. Although the management toolset has to operate on the TANGRAM DPE,
it is desirable to supply other platforms as well, whenever needed.

The design was largely guided by the need for applications which are inde-
pendent from an underlying existing platform. In other words, it is important to
be able to add functionality to the application with ease and be able to access dif-
ferent platforms, e.g Database Management Systems, without having to rewrite
the existing application.

Extensibility

Access to the managed objects had to be oriented on the existing TANGRAM
DPE, which is compliant with the TINA Service architecture 2.0 from March 1995.
In December 1996, during the design phase of this project, TINA-C delivered a
new version of their service architecture; the Service Architecture 4.0, also named
SA 96. This version was followed one month later by the version 4.1 which
included minor changes. It was obvious then, that the TANGRAM platform had
to be changed sooner or later to fit the constraints of the new architecture. There-
fore, this design was guided by the intension to create an application architecture
which allows a migration to the new platform with as few changes as possible in
the existing implementation.

Access to the TANGRAM DPE is accomplished from ‘outside’ using the provided
management interfaces. The management facilities are part of the application.

Management
Application

ORB

TANGRAM
DPE

Summary Requirement Specification

44

Requirements concerning naming and programming conventions that I com-
piled for the implementation can be found in Chapter 28 ’Style Guide’ on page
135.

6.3 Summary

The goal of this project is to design and implement a management toolset which
administers PCS components in a TINA compliant distributed environment. The
required DPE platform is the TINA compliant TANGRAM DPE which uses the
recent CORBA technology. Besides a reusable and extendable design, the toolset
should provide a graphical user interface to support end-users with different
experiences. The programming language is the platform independent recent
‘Internet’ programming language, Java.

In order to get lean applications which could be used in Java enabled browsers,
I decided not to build one monolithic application but instead to design a set of
independent applications; small enough to be loaded in an acceptably short time.

Although based on the above mentioned requirements, the design of the man-
agement toolset was influenced by the design pattern languages that have
emerged in recent years. Chapter 30 presents a catalog of the applied design pat-
terns used in this thesis project.

Management

ORB

TANGRAM
DPE

Figure 6-2. Bridging With Three Different ORB Implementations

ORB IIOP

C++ Imple-
mentation

Server

ORB

Visibroker ORB (Java
Implementation)

Applications

II
O

P

To get access to the computational objects to be managed, three different ORB Imple-
mentations were used: (1) The management applications contact the Visigenics Java
ORB. (2) A HP Distributed Smalltalk implementation of an ORB is then contacted
which contacts a C++ Implementation of an ORB to get access to the computational
objects.

1.1.

2. 3.

HP Distributed
Smalltalk Imple-
mentation

45

7 Management Toolset
Architecture

My main objective during the design phase of this project was to develop an
architecture which can be applied to every single implementation of the manage-
ment applications of the management toolset. This motivating idea was driven by
the need for an application which is independent from both its underlaying plat-
form, as well as from the service which the platform provides. It should also be
easy to maintain, to extend and be as reusable as possible. This chapter explains
my design decisions for the overall architecture of the management toolset.

7.1 Layering Concepts

Each management toolset follows the layering concepts that help to structure the
applications into groups of subtasks in which each group of subtasks is at a par-
ticular level of abstraction.

Each management toolset is structured into three levels:

■ An Application Layer. The application layer contains those parts of the man-
agement toolset described in the Model-View-Controller design pattern.

■ A Service Access Manager Layer. The Service Access Manager Layer hides
the access functionality of a specific platform from the Application Layer and
offers a consistent interface for it. This allows an application to exchange a
Service Access Manager for a specific platform with a Service Access Man-
ager of a different platform at anytime.

■ A Service Access Layer. The Service Access Layer contains the application
programmer interface of a specific platform. There is no restriction on how
such an API should be realized.

The following sections explain each layer in more detail.

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design
Par t 2

Application Layer

Service Access Manager Layer

Service Access Layer

Figure 7-1. Toolset Layering Concepts

Layering Concepts Management Toolset Architecture

46

7.1.1 Layer for Application

The application layer is the topmost layer. It is responsible for representing the
informational aspects of the managed object. The application layer is designed
following the Model-View-Controller design pattern.

The design guidelines for the application are explained in Section 7.3 on page
51.

7.1.2 Layer for Service Access Management

Facade

The Service Access Management Layer consists of the Service Access Managers,
which are responsible for managing the access to their dedicated platforms. A
Service Access Manager provides a unified interface to the application layer and
is therefore exchangeable. The Application Layer does not specify what kind of
Service Access Manager it deals with as long as the a Service Access Manager
supports the expected interface. The Service Access Manager Layer also hides the
complexity of an application programmer interface. This fulfills the constrains of
the Facade pattern.

Application Layer

Model
Model

View Controller

Application Layer

Figure 7-2. Toolset Layer for Application

Service Access Manager Layer
Service Access Manager Layer

Service
Access
Manager
X

Service
Access
Manager
Y

Service
Access
Manager
Z

Figure 7-3. Toolset Layer for Service Access Manager

Part 2: Requirements and Design Layering Concepts

47

The service management layer is responsible for providing an unified inter-
face to the application layer. The service management layer converts data
retrieved from the service access layer into the format used by the application.
The service management layer also hides the service access layer from the appli-
cation layer.

This design provides the possibility to change platforms during runtime. If
more than one Service Access Manager is available, the management applications
are capable of managing different platforms simultaneously. This is made possi-
ble by introducing an abstract manager which defines the standardized interfaces
for a Service Access Manager. The application only deals with the standardized
interface of an AbstractManager which will be replaced by a concrete manager
during runtime.

Another responsibility of the Service Access Manager is to convert data struc-
tures, which are retrieved from the Service Access Layer, to the data format struc-
ture expected from the Application Layer. This is an other aspect of achieving
independence from an underlying platform.

7.1.3 Layer for Service Access

The Service Access Layer houses the application programmer interfaces (API)1.
An API might be a package of modules which access specific platform or just one
single monolithic unit. There are no restrictions on how the API is implemented
and on what interfaces the API offers. All these aspects are wrapped by the Ser-
vice Access Manager.

For example, one API could provide the access to a CORBA Object Request
Broker while an other could provide the access to a Database Management Sys-
tem. Different API implementations could be exchanged, for example, because
one offers better access to a system and the other, better performance. This
exchange would only affect the Service Access Manager while the Application
Layer would remain untouched.

1. A pattern description for API can be found in Mowbray’s ‘CORBA Design Patterns’
[Mowbray+97] Library(144).

Service Access Layer

Figure 7-4. Toolset Layer for Service Access Manager

Service Access Layer

API for
Platform
X

API for
Platform
Y

API for
Platform
Z

Design of the Overall Objects Management Toolset Architecture

48

7.2 Design of the Overall Objects

This chapter describes the design of the general architecture for special classes
which are implemented in every tool package.

7.2.1 Factories

The Factory classes are based on the design pattern Factory Method2.

The Factory classes responsibility is to create Service Access Manager (SAM)
instances. They provide interfaces for creating SAMs of all supported platforms
during runtime. Factories provide methods for querying a listing of all available
SAMs. For the moment, only the TANGRAM platform is supported. An API for
the PCS ORACLE database is in the implementation phase. The Access Manager
to that platform will be implemented as soon as an API for that platform is avail-
able.

7.2.2 Models

A model is the representation of a TINA-based PCS component. The model is
comprised of all the functionalities needed to administer a managed object.

2. [Gamma+94], Factory Method (107)

Figure 7-5. Abstract and Concrete Factories

ConcreteFactory

ManagerID_PlatFormX
ManagerID_PlatFormY

createManager
getAvailableManagerNames
getActiveManagerName
changeManager

AbstractFactory

createManager(ManagerID) {abstract}
getAvailableManagerNames() {abstract}
getActiveManagerName() {abstract}
changeManager(ManagerID) {abstract}

Figure 7-6. The Class Model With Aggregated Informational Objects

InformationalObjectZInformationalObjectX InformationalObjectY

Model

set
get
list

Part 2: Requirements and Design Design of the Overall Objects

49

Due of the structure of such a managed object, a model aggregates a set of
classes. An extreme example is the Terminal Equipment Agent component, which
consists of six informational objects. Each object is modeled in a class and each
class could use a set of helping classes. The model keeps those parts together and
provides an operational interface to operate on that objects in an consistent way.
The model fulfills the requirements of the Facade pattern3.

7.2.3 Views

Views are responsible for the representation of the presented data. A view might
represent a group of data fields as well as a single field or a list. Each view has a
controller which controls access to the model. A View is normally permitted to
read data from the Model without using a controller.

7.2.4 Controllers

Each View communicates with the Model through a Controller. A Controller can
be configured with more or less rights. If desired, it is possible to exchange a con-
troller during runtime. This could allow, for example, a user to change from a
beginner mode, which permits modification of data, to a more advanced mode
with full access rights.

3. [Gamma+94], Facade (185)

Figure 7-7. The Class View

aConcreteViewView

setController

Implements

Figure 7-8. The Class Controller

Observer

update {abstract}

Implements

AbstractController

create
modify
delete
select
update {abstract}

ConcreteController

update
getIdentification

aConcreteView

View

setController(AbstractController)

Mgmt

debugger

setDebugger
getIdentification {abstract}

Design of the Overall Objects Management Toolset Architecture

50

7.2.5 Service Access Manager

A Service Access Manager manages the access to a specific platform, e.g. TAN-
GRAM or ORACLE database. It uses the API and converts data formats from a
specific platform to the data format for the model. It separates the model from the
API.

An AbstractManager defines the common signature of Manager methods. The
specificAbstractManager, e.g. TEAAbstractManager describes more specifically
the parameters needed by a specific Object Manager. The concreteManager, e.g.
TEAManagerTANGRAM, implements the access methods for a specific platform
using the provided application programmer interface (API).

An API does not need to support a predefined interface or special signatures.
It is up to the concreteManager to wrap the specific methods and to marshall all
the parameters needed by the API. This allows an easy exchange of APIs by just
implementing a new concreteManager. Higher layers are not affected.

Figure 7-9. The Class Service Access Manager

specificAbstractManager

create (concreteObject) {abstract}
delete (concreteObject) {abstract}
modify (concreteObject) {agstract}
getListOfIds (concreteObject) {abstract}

AbstractManager

create (Object) {abstract}
delete (Object) {abstract}
modify (Object) {abstract}
getListOfIds (Object) {abstract}
getManagerName {abstract}

concreteManager

create
delete
modify
getListOfIds
getManagerName

Part 2: Requirements and Design Design of the Applications

51

7.3 Design of the Applications

Model-View-
Controller

Applications are located in the Application Layer. The design of an application
follows the Model-View-Controller pattern.

Command
Processor

All applications support Undo and Redo commands, therefore the Command-
Processor pattern is applicable.

Factory Method

Adapter

The model grants access to the system. To do so, it needs a Service Access
Manager. The application is responsible for choosing and creating a Service
Access Manager and passing its references to the model. Therefore, the applica-
tion uses a Service Access Manager Factory to create an appropriate Service
Access Manager. This is also an application of the Adapter Pattern4.

4. [Gamma+94]. Adapter(139)

MediatorWhere needed, the communication between different views is managed by a
mediator— following the Mediator pattern.

SingletonThere is only one model for a specific type of managed object available. In
order to avoid having more than one instance of a Model at runtime, I used the
Singleton pattern. Nevertheless, an application can operate using different mod-
els of different managed object types. For example, the Location Manager uses
the User Model to retrieve a list of all available users, and at the same time it can
use the Terminal Equipment Agent Model to retrieve a list of all available termi-
nals. In other words: there is no limitation on the number of different model-rep-
resented managed objects an application can use; but at runtime there will always
be only one instance of a specific model.

View

Mediator

ServiceManagerFactory

uses

creates

Controller

displays aspects of

ConcreteServiceManager

CommandProcessor

Command

uses

mediates

executes

UserApplication

Model

Figure 7-10. Framework for Management Toolset Applications

Design of the Applications Management Toolset Architecture

52

7.3.1 Administering the Data

Operation on managed objects are only possible using the model which reflects
the actual state of the managed object. The model uses the Service Access Man-
ager to manipulate objects belonging to the system. The model has knowledge
about the representation of the data only; it doesn’t know how and where those
objects are stored or how to retrieve them. Therefore, it is unaware of which Ser-
vice Access Manager it uses because all of them support the standardized inter-
face of the AbstractManager.

7.3.2 Displaying the Data

A view is used to display a specific aspect of the model. There is no limitation on
the amount of views an application might have. Each view has its own controller
which regulates a view’s access to the model.

7.3.3 Controlling the Access to the Data

The controller used in this design differs from the classical controller of the
Model-View-Controller pattern. The classical responsibility of the controller is to
control the mouse and keyboard input of a user. Usually, controllers are already
implemented in modern graphical application toolkits. Java, which is chosen as
target language, provides two methods to respond to user input: action() and
handleEvent(). Modern descriptions of the MVC are more likely to emphasis the
Publisher-Subscriber or the Observer Design Patterns.

Controlling Access Rights

In this thesis project, the controller serves as an interface to the Service Access
Manager layer. Depending on the implementation of a controller, the user has
more or less access rights. For example, one controller may read and modify data
only while an other may add the capability to create new data objects.

Using controllers allows one, for example, to change during runtime from
novice mode to expert mode or vice versa.

ModelSingleton ConcreteSAMManagerusesimplements

AbstractManagerObservable

Part 2: Requirements and Design Design of the Service Access Manager

53

7.4 Design of the Service Access Manager

Every concrete Service Access Manager is derived form the AbstractManager
class which defines standardized interfaces. AbstractManager class defines the
overall behavior of the Service Access Management classes.

7.5 Design of the Inter Layer Communication

Each layer communicates in a specific way with its neighbor layers, and only with
them. The following sections explains what kind of communication between lay-
ers is established and how it is accomplished.

7.5.1 Exception Handling

Exceptions provide a clean way to check for errors without cluttering code.
Exceptions also provide a mechanism to signal errors directly rather than using
flags or side effects such as fields that must be checked. Exceptions make the error

Figure 7-11. From Abstract Manager to Concrete Manager

MOsManagerSystemY

create
delete
modify
get
getManagerName

AbstractManager

create(Object) {abstract}
delete(Object) {abstract}
modify(Object) {abstract}
get(Object) {abstract}
getManagerName() {abstract}

MOsMangerSystemX

create
delete
modify
get
getManagerName

MOsManagerSystemZ

create
delete
modify
get
getManagerName

MOsAbstractManager

create(ObjectToManage) {abstract}
delete(ObjectToManage) {abstract}
modify(ObjectToManage) {abstract}
get(ObjectToManage) {abstract}

Abstract methods declared in AbstractManager are redefined in MOsAbstract-
Manager by naming the concrete needed parameter types.

Design of the Inter Layer Communication Management Toolset Architecture

54

conditions that a method can signal, an explicit part of the method’s contract. The
list of exceptions can be seen by the programmer, checked by the compiler, and
preserved by extended classes that override the method5.

Buschmann et al. give in the Layers pattern description an explicit hint as to
how exceptions should be dealt with:

Error handling can be rather expensive for layered architectures
with respect to processing time and, notably, programming effort.
An error can either be handled in the layer where it occurred or be
passed to the next higher layer, in the latter case, the lower layer
must transform the error into an error description meaningful to the
higher layer. As a rule of thumb, try to handle errors at the lowest
layer possible. This preserves higher layers from being swamped
with many different errors and voluminous error-handling code. As
a minimum, try to condense similar error types into more general
errors. If you do not do this, higher layers can be confronted with
error messages that apply to lower-level abstractions that the higher
layer does not understand. And who hasn’t seen totally cryptic error
messages being popped up top the highest layer of all—the user?6

Therefore, exceptions are dealt with in the following way in each management
toolset:

■ Similar errors are condensed, which results in the fact that;
■ Each layer has its own exception.
■ Exceptions are treated where they occur or;
■ Exceptions provide a meaningful message which can be presented to the user

of the application.

Mapping of Exception Classes

The following mapping of exception classes to layers is applied as shown in Table
7-1.

The Exception flow is in only one direction, from the lower to the upper layer.

5. [Arnold+96], p 133
6. [Buschmann+96], p 43

Table 7-1. Mapping of Exceptions

Layer Exception Type Remark

Service Access Layer ApiException

Service Access Manager
Layer

ManagemetException

Application Layer ModelException Thrown by the Models

ControllerException Thrown by the Controllers

ViewException Thrown by the Views

CommandException Thrown by Commands

Part 2: Requirements and Design Design of the Inter Layer Communication

55

The inheritance hierachy of Exceptions is shown in Figure 7-13. Since Java is the
target language, all exceptions are subclasses of the Java class Exception.
AbstractMngmtException enhances the Exception class with a method getHint
and an enhanced constructor, which can be used to pass a hint additionally to the
standard message provided by Java.

Figure 7-12. Exceptions Thrown by Layers

Service Access Layer

Service Access Manager Layer

Model

View Controller

SystemExceptions

ApiExceptions

ManagementExceptions

ModelException

ControllerExceptions

ViewExceptions

Figure 7-13. Exception Inheritance Hierachy

Exception

getMessage

AbstractMngmtException

hint

getHint

ControllerException ModelException CommandException

MngmtException ViewException

Design of the Inter Layer Communication Management Toolset Architecture

56

7.5.2 Application Layer to Service Access Manager Layer

The communication between Application Layer and Service Access Manager is
managed by the Model of the Application Layer. The Model aggregates a specific
Service Access Manager which it uses to get data from and set data in the system.
The Model represents the business model and therefore knows about the rela-
tions between the classes which comprises the model. If the end-user request for
data from the system or wants to create or delete objects, the view sends this
request to the controller which decides, if the view is allowed to execute this spe-
cial command. If so, the command sends the request to the model. The Model
hands over the needed data to the Service Access Manager. The Service Access
Manager converts the data retrieved form the Model into the special data format
needed by the Service Access Layer and invokes the according command from
that layer.

7.5.3 Service Access Manager Layer to Service Access
Layer

The Service Access Manager wraps the application programmer interface calls of
the Service Access Layer. It converts data from the Service Access Layer into the
data format expected by the Application Layer and vice versa.

57

8 Objects to be Managed

This chapter describes the informational structure of the managed objects,
namely the User Agent, the Local Context, the Terminal Equipment Agent and
the Registration Server.

8.1 User Agent

The User Agent represents a user in the provider domain and contains user spe-
cific information. The visible parts of this object are depicted in the OMT diagram
below.

8.2 Local Context

The Local Context describes the terminal equipment at a specific location. The
Local Context consists of an object representing the location and a list of termi-
nals.

8.3 Terminal Equipment Agent

The Terminal Equipment Agent (TE-A) is the most complicated object to be man-
aged in the scope of this work. The TE-A IDL definition is comprised of several
nested structures which had to be mapped to classes.

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design
Par t 2

UserAgent

id
name
authentication
ownerInformation
subscriber

TE-A
LocalContext

setLocation
getLocation
addTerminal
removeTerminal
removeTerminals
getTerminalIds

Location

id
description
label

Registration Server Objects to be Managed

58

8.4 Registration Server

The Registration Server allows the user to manage registrations at locations as
well as to register a user manually at a location. The informational object User-
Registration contains the relevant attributes of a user registration.

T_TermInfo

terminal_id
term_type
supported_presentation
term_cap

T_Coding_Attributes

T_Coding_Attribute

coding

T_Coding_Quality

delay
jitter
bandwidth
semantic_loss

T_TermConnAttributes

has_connection_control
supported_codings
maximal_bandwidth
total_bandwidth
maximal_no_of_connections
maximal_qos
supported_mode
supported_bearer

T_TemServAttributes

has_service_control_capabilities
supported_services
maximal_service_procession_performance
maximal_no_of_service-sessions
supported_media
comm_protocol

T_TermAttributes

is_portable

TE-A

owner_info
term_label
term_state

UserRegistration

personalID
locationID
homeIPAddress
registrationType
registrationDate

59

9 Package Concepts and
Design

This chapter gives an introduction to the package concept. I will describe the
meaning and purpose of the package concept, and how it is applied to this
project. The chapter ends with a listing and explanation of all the packages in the
management toolset.

9.1 What Are Packages for?

In his article about packaging a system1, James Rumbaugh gives an introduction
into the packaging concept:

The most important high-level decision about the development of a
system is how the model is divided into parts. Any complex system
must be constructed in parts, so that teams of developers can work
productively in parallel. This requires that the work units be identi-
fied and isolated to some extent, so that different work teams do not
interfere with each other. Furthermore, it is difficult or impossible to
understand a large monolithic system. Engineering practice in all
disciplines has shown that systems can best be understood as collec-
tions of loosely-coupled subsystems that are connected using well-
specified interfaces. […]

A package has no inherent semantic meaning. It is just a subdivi-
sions of the model. It is desirable that packages follow natural seman-
tic boundaries, but this is just a design goal, not the inherent
meaning of the concept.

What is a package then? It is a management unit for models, a
unit for organizing, controlling, and managing the model. It is first
and foremost a meaningful work unit, something that represents a
group of closely related modelling elements that must be managed
together. It is an access control, unit for controlling updates to the
model. It is a configuration control unit for saving and versioning
parts of the model. […]

A package is also a name space for naming modelling elements,
such as classes. This may seem odd at first, because I said, that pack-
ages have no semantics. This is correct; name spaces are fundamen-
tally software engineering constructs for team development and not
semantic entities. Why do we need name spaces at all? Because
teams working in parallel can accidentally choose the same name for
different things. If there is a flat name space for everything, then all
developers must synchronize their choices of names. While this
might have some advantages, it introduces an central bottleneck
that is incompatible with parallel development. If we avoid the cen-
tral bottleneck, then developers can conflict on the use of names. The
solutions is a recursively-nested tree of name spaces with unique

1. [Rumbaugh96a]

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design
Par t 2

Guidelines for Naming Packages Package Concepts and Design

60

names within a given name space and path names to identify the
name space within the tree. any modelling element can be uniquely
identified by its path name and local name within its name space.
This is an old solution long used in programming languages. A pac-
kage must be a name space, because it is a unit of independent work
and therefore must isolate itself from naming conflicts.

9.2 Guidelines for Naming Packages

In their book “The Java Programming Language” [Arnold+96], the authors give a
description of how package names should be chosen. This package naming con-
vention is becoming more and more common in commercial software packages
written in, and for Java.

A package name should be unique for classes and interfaces in the
package, so choosing a name that’s both meaningful and unique is
an important aspect of package design. But with programmers all
around the globe developing Java language packages, there is no
way to find out who is using what package names. Choosing unique
package names is therefore a problem. If you are certain a package
will be used only inside your organization, you choose a name using
an internal arbiter to ensure no two projects pick clashing names.

But in the world at large this is insufficient. Java package identi-
fiers are simple names. A good way to ensure unique package
names is to use an Internet domain name.2

The authors suggest the use of a reversed domain name and to spell the high-
est-level domain name in capital letters, e.g. DE.gmd.fokus.tools. They suggest
choosing the capital letters to “ […] prevent conflicts with package names chosen
by those not following the convention, who are unlikely to use all upper-case, but
might name a package the same as one of the many high level domain names.”

However, the use of the highest-level names seems to be more common. For
example, Visigenic uses the name, com.visigenic.vbroker…, OMG in the Visigenic
software package uses, org.omg.CORBA…, Roguewave uses com.roguewave…
just to name a few.

Naming Convention

The packages with in this project start with de.gmd.fokus.ice.pcs. Our domain
name is fokus.gmd.de. The work unit name is ICE (Intelligent Communication
Environments). The management toolset supports Personal Communication
Support (PCS) components, therefore, the umbrella name is
de.gmd.fokus.ice.pcs.mngmt…

2. [Arnold+96], pp 186

Part 2: Requirements and Design Packages of the Management Toolset

61

9.3 Packages of the Management Toolset

The management toolset package is the topmost package of the management
toolset. It contains a set of nested packages supplying the different needs of the
toolset. The package name for the management toolset is
de.gmd.fokus.ice.pcs.mngt. Besides the nested packages, the management pack-
age contains abstract classes which define a standardized behavior, exception
classes used by other packages, and interface definitions.

Grey Shaded
Package Symbols

Figure 9-1 shows the packages which are nested in the management package
(mngmt). Grey shaded packages contain packages themselves, which will be dis-
played separately.

The package for the graphical user interface contains classes for the purpose of
displaying data. Spoken in the language of the design pattern Model-View-Con-
troller, those classes represent the view. The package for the applications contains
the classes with which to start a management applications or applet. The package
for the application programmer interfaces contains packages for accessing differ-
ent platforms.

Registration
Server

Management

User Agent

Local Context

Terminal Equip-
ment Agent

API

GUI

Figure 9-1. The Management Toolset Package

Applications
Utilities

Application Programming Interface Related Packages Package Concepts and Design

62

9.4 Application Programming Interface Related
Packages

The application programming interface package contains a set of packages which
provide access to different platforms. Additional packages providing access to
other platforms should be placed inside of the API package. Figure 9-2 depicts the
application programming interface package and its sub-packages. Packages con-
taining other packages are shaded grey.

9.5 Package Tangram

The tangram packages contain classes to access the TANGRAM platform.

anOther
Platform

API

tangram

Figure 9-2. The Application Programming Interface Package

anOther
Platform

The grey shaded packages stands for possible additional packages which could
be implemented at a later time.

Naming TANGRAM
(Stubs)Service

tangram

Figure 9-3. The Tangram Package

Part 2: Requirements and Design Graphical User Interface Related Packages

63

9.6 Graphical User Interface Related Packages

The graphical user interface package contains a set of packages which provide the
different views used inside of applications for the display of management rele-
vant data.

The responsibility of each package is to hold the data that is to be displayed.
Each package includes a set of classes which define specific groups of data to be
displayed. These groups are held together by groupboxes as a ‘visual container’.
Each groupbox builds a component which can be reused to build new applica-
tions.

9.7 Packages for Accessing the TANGRAM
Platform

StubsThe packages containing the stubs for access to the TANGRAM platform are
placed inside the API package de/gmd/fokus/ice/pcs/mngmt/api. This is done for
reasons of convenience only, and is not due to any restrictions on the TANGRAM
project.

The complete package is created automatically by the idl2java compiler.

Package TANGRAM

The package TANGRAM contains all modules concerning the TANGRAM plat-
form. The PCS in TINA supporting components are also nested inside this pac-
kage.

Figure 9-5 depicts the TANGRAM package and its subpackages of the first
level. Packages inside the TANGRAM package which also contain packages are
shaded grey.

GUI

Local Context

Figure 9-4. The Graphical User Interface Package

User Agent
Views Views

Terminal
Equipment
Views

Registration
Server
Views

Package for Accessing the Naming Service Package Concepts and Design

64

Package Life Cycle Manager

The package Life Cycle Manager contains all classes for lifecycle management of
the objects inside the TANGRAM platform. The Life Cycle Manager represents a
template for factory functionalities needed to control and enable the creation,
deletion and initialization of objects.3

Package Configuration Manager

The package Configuration Manager’s task is to manage a group of objects which
are associated in a specific manner. Its responsibilities are to request, create, and
terminate the interfaces of the Computational Objects belonging to that Configu-
ration Manager4. These capabilities make possible the achievement of ODP loca-
tion transparency.

Package End User System

The package End User System contains classes which enable communication with
the TINA GSEP.

Package Access Session

The package Access Session contains classes which support the TINA Access Ses-
sion.

9.8 Package for Accessing the Naming Service

The package Naming Service provides the classes which support the naming ser-
vice functionalities for the accessing of TANGRAM Modules and Interfaces

3. see [Eckardt+96a]
4. loc.cit.

TANGRAM

End User

Lifecycle

Access Session

Configuration

Figure 9-5. The TANGRAM Package

ManagerManager

System

Par t 3

Implementat ion

This part describes the implementation of the management
toolset. It starts with descriptions of the organizational aspects of
the implementation, and the package and their mapping to the
file structure. This is followed by explanations of the abstract
classes and interfaces, followed by a chapter which introduces
the dynamic model and explains how the computational objects
interact. The remaining chapters list and describe all classes—
thereby supporting comprehension of the implementation and
giving guidance for finding needed components.

TINA

PCS in TINA

TANGRAM

CORBA

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

User Agent

TE-A

LCxt

Registration
Server

Summary

Outlook

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Background Design Implementation User’s Manual Conclusion Appendix

67

10 Package Usage

Packages serve for better dividing of a model into parts. They are units for man-
aging, organizing, and controlling a model. Packages are access control and sup-
port the concept of unique naming spaces. This chapter gives an overview over
the mapping of the designed packages into the naming spaces of this work.

10.1 Package Tree for the Toolset

The management toolset is organized in a tree structure which is shown in Figure
10-1.

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

mngmt

api

dialog

lcxt

rs

tea

ua

uap

util

viewLCxt

viewRS
viewTEA

viewUA

appLCxt
appRS
appTEA
appUA
appletLCxt
appletRS
appletTEA
appletUA

tangram CosNaming

Tn

MgmtTnServer

Figure 10-1. The Package Tree of the Management Toolset

Package ‘Management’ Package Usage

68

10.2 Package ‘Management’

The management package’s name is mngmt. This package is the container pac-
kage for the whole management toolset.

10.3 Package ‘Dialogs’

The Dialogs package includes all classes and packages related to graphical user
interfaces. Each graphical user interface for a special managed object resides in its
own packages.

a. “…” stands for de.gmd.fokus.ice.pcs.mngm

Table 10-1. Packages of the Management Package

Package Name Description

de.gmd.fokus.ice.pcs.mngmt Basic classes. Container Package for all other
packages.

de.gmd.fokus.ice.pcs.mngmt.util Utilities, used in almost all classes

de.gmd.fokus.ice.pcs.mngmt.uap Applications and applets. Contains other pack-
ages.

de.gmd.fokus.ice.pcs.mngmt.ua User Agent

de.gmd.fokus.ice.pcs.msngmt.tea Terminal Equipment Agent

de.gmd.fokus.ice.pcs.mngmt.lcxt Local Context

de.gmd.fokus.ice.pcs.mngmt.rs Registration Server

de.gmd.fokus.ice.pcs.mngmt.api Application Programming Interface. Contains
other packages.

de.gmd.fokus.ice.pcs.mngmt.dialog Views, Graphical User Interface dependent
packages. Contains other packages

Table 10-2. Graphical User Interface Dependent Packages

Package Namea Mapping Description

….dialog GUI Common views, used in several applications

….dialog.viewLCxt Local Context Views Views, only used in application for the man-
agement of the Local Context

….dialog.viewRS Registration Server
Views

Views, only used in application for the man-
agement of Registration Server

….dialog.viewTEA Terminal Equipment
Views

Views, only used in application for the man-
agement of the Terminal Equipment Agent.

….dialog.viewUA Registration Server
Views

Views, only used in application for the man-
agement of the User Agent

Part 3: Implementation Package ‘Tangram’

69

10.4 Package ‘Tangram’

The tangram package’s name is Tn. It includes all classes and packages created
by the idl2java compiler. The idl2java compiler transforms modules found in the
IDL file into packages. IDL structures are converted into classes as well as enu-
meration types.

10.5 Package ‘Naming Context’

The Naming Context package’s name is CosNaming. It includes several packages
that are only of internal importance.

a. Grey shaded packages are not used in the management toolset.
b. “…” stands for de.gmd.fokus.ice.pcs.mngmt

Table 10-3. Packages Created from the Tn IDLa

Package nameb Mapping Description

….api.Tn TANGRAM TANGRAM root

….api.Tn._I_ConfigurationManager Configuration
Manager

Configuration Manager

….api.Tn._I_LifeCycleManager Lifecycle Manager Life Cycle Manager

….api.Tn._I_CoControl Classes to support CO control

….api.Tn.Eus End User System End User System, i.e. Generic
Session Endpoint (GSEP)

….api.Tn.Eus._I_GsepUApp Generic Session Endpoint User
Application

….api.Tn.Ass Access Session Access Session

….api.Tn.Ass.Pcs PCS enhanced components

….api.Tn.Ass._I_UCxt Interfaces for the Usage Context

….api.Tn.Ass._I_PcsRSUserLocation Classes to support the Interface
for the User Location compo-
nents

….api.Tn.Ass._I_PcsRSUsage Classes to support the Registra-
tion Server usage interface

….api.Tn.Ass._I_PcsRSMgmt Classes to support the Registra-
tion Server management inter-
face

….api.Tn.Ass._I_SessionDescription Classes to support the interface
to the Service Description.

….api.Tn.Ass._I_UaSession Classes to support the User
Agent Session

….api.Tn.Ass._I_UaInvitation Classes to support User Agent
Invitation

Package ‘Naming Context’ Package Usage

70

71

11 Abstract Classes,
Interfaces and Exceptions

This chapter describes classes, interfaces and exceptions defined in the package
mngmt. These classes define a common mode of behavior for the remaining
classes of the management toolset.

11.1 Classes

In Table 11-1 the abstract classes of the package mngmt are listed. Each class is an
abstract class and describes common signatures for derived classes.

11.2 Interfaces

In Table 11-2, interfaces of the package mngmt are listed. So far, there is only one
interface definition.

Table 11-1. Abstract Classes Defined in Package mngmt

Class Name Mapping Description

AbstractFactory Factory Method Describes the signatures for all fac-
tory classes of the management
toolset.

AbstractManager Management Layer Describes the signatures for all ser-
vice access manager classes of the
management toolset.

AbstractController Model-View-Controller Describes common signatures of all
controller classes.

Command Command Processor Describes common signatures of all
command classes.

Table 11-2. Interfaces Defined in Package mngmt

Interface Name Mapping Description

View Model-View-Controller Defines common signatures for all
Views.

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

Exceptions Abstract Classes, Interfaces and Exceptions

72

11.3 Exceptions

Exceptions declared in the package mngmt are thrown by different layers and
therefore used by all related classes. For more information about Exception han-
dling in the management toolset see Section 7.5 on page 53.

The behavior of all Exception classes is the same. Each class is derived from the
AbstractMngmtException class, which is derived from the Java Exception class.
All Exception classes consist of an additional method getHint() which allows the
deliverance of more detailed information.

Table 11-3. Exceptions Defined in Package mngmt

Class Name Thrown by Layer Description

AbstractMngmtException Never thrown. Abstract Exception class which
defines an extension of the Java
Exception class.

MngmtException Service Access Manager
Layer

Exceptions thrown by the Service
Access Manager layer.

CommandException Application Layer Exceptions thrown by command
classes

ControllerException Application Layer Exceptions thrown by controller
classes.

ViewException Application Layer Exceptions thrown by view classes.

ModelException Application Layer Exceptions thrown by model classes.

73

12 Dynamic Model

This chapter describes the dynamic aspects of the management toolset which are
applied to all implementations of the management applications.

12.1 Application Layer

The application layer contains the application relevant computational objects.
This section gives an overview of interaction between computational objects with
in the application layer.

Initialization Phase

The initialization of a management application is normally completed in a few
steps:

1. Create a factory.

2. Query factory for a specific Service Access Manager.

3. Create the model.

4. Create the views.

5. Create the command processor.

6. Create the controllers.

7. Pass the controller to a view component.

8. Create mediators, if needed.

9. Create visual components (menu, statusbar, buttons).

Steps one to seven are typical for the initialization phase of all management
(user) applications. For convenience, the management application computational
object is abbreviated in the following graphics as UAP. Note: In the actual imple-
mentation of the management toolset only the TE-A management application
uses a mediator computational object to administer its views.

The first action for an application is to create a Service Access Manager Fac-
tory which can then be queried for the desired Service Access Manager. The
model needs the Service Access Manager in order to manage the computational
objects.

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

UAP
create a Manager

Factory

The createManager method of a factory returns a specific Service Access Manager.

Application Layer Dynamic Model

74

After the model is created, the next step is to create the views needed. A view
needs to know the model it has to communicate with. Therefore, a model is
passed as a parameter to a view during creation.

With the goal of creating a controller, the next step is to create a CommandPro-
cessor object. The CommandProcessor object will be passed to it during creation
of a controller.

After the model, the views and the command processor are created, the UAP
creates controller objects. Each controller objects gets it’s associated view and the
command processor as parameters during its creation.

After the needed controllers are created, they must be set in the associated
view.

UAP
create a Model

Model

During creation of a model, the UAP passes the Service Access Manager to the model.

UAP ControllerController
Controller

View

create one ore more Views

A user application creates as many view objects as are needed.

UAP

create a

Command

During creation of a model, the UAP passes the Service Access Manager to the model.

Processor
Processor

Command

UAP ControllerController
Controller

Controller

create one ore

A user application creates as many controller objects as are needed to pass to the views.

more
Controller

Part 3: Implementation Platform Access

75

If needed, the UAP might create a mediator object which is responsible for
managing a statusbar object to display short messages at the bottom of the appli-
cation window, a menu object, and all necessary buttons and graphic objects.

12.2 Platform Access

To access a specific platform, the model uses the Service Access Manager (SAM)
for the modification of data. For the model, and therefore also for the application
layer, the access to a platform is transparent. In fact, the model never knows
which platform it is actually dealing with.

The following example exemplifies the activities between the different com-
putational objects while they are modifying data. First, a user queries to save
modified data. The action of modification implies the act of saving the data in the
system to retrieve a persistent state of the data.

The controller receives the query for saving. In case the controller is allowed
to permit modification, it builds a modification command and passes to it the
changed data. It then passes the interface of the modification command to the
command processor. The command processor executes the modification com-
mand and stores a reference to the command for further undo actions. The com-
mand CO contacts the interface of the model and invokes the modification
command of the model. The model sends the request with the changed data to
the Service Access Manager (SAM). The SAM converts the data into the requested

UAP

set Controller

View
to View

Factory SAM Model View Com.Proc. ControllerUAP

create

create
SAM Ref.

create

createwith SAM Reference

create with Referenced of Model, View and Command Processor

create with Model Reference

Figure 12-1. Initialization Phase of a Management Application

Platform Access Dynamic Model

76

format of the Service Access Layer. After converting the data, the SAM invokes
all necessary command of the API which now will send the request for modifica-
tion to the platform system.

1 The View asks the Controller to save modified data.

2 The controller creates a ModifyCommand.

3 The controller passes the ModifyCommand to the CommandProcessor.

4 The CommandProcessor invokes the ModifyCommand to modify (save)
the data.

5 The ModifyCommand contacts the Model interface to invoke the Model’s
modify command.

6 The Model contacts the Service Access Manager interface for modification.

Modify-

Model

View Controller

Command

SAM

GSEP NS

Processor

Adaptor Adaptor

1.

2.

3.

4.

5.

6.

Command

Figure 12-2. Modification of Data

77

13 User Agent Management

This chapter lists all classes used to build the management tools for User Agent
management. The classes can be found in the package
de.gmd.fokus.ice.pcs.mngmt.ua. For more detailed information please refer to
the online documentation1.

The following description of a User Agent computational object (Figure 13-1)
is taken from the file UA.ODL which is part of the implementation of the TAN-
GRAM platform.

1. See “Source Code Documentation” on page 134.

Table 13-1. Classes in Package ‘ua’

Name
Mapping to Design

Pattern
Description

AbstractUserManagement Redefines Methods of Abstract Man-
ager concerning the special needs of
the User Agent computational
object.

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

UA.ODL

behavior
“The User Agent (UA) computational object rep-
resents a user in the service provider domain
of a TINA system.

It supports the user by accessing TINA ser-
vices.

The UA is involved, when a user wants to start
a service session, join in an existing service
session, register at terminals, maintain the
users preferences on service execution and
when a user is invited to a service session.

The UA is supported by some User Agent Sup-
porting objects, such as Usage Context, Per-
sonal Profile, Authentication and Session
Description.

The UA controls the life-cycle of service ses-
sions.”;

Figure 13-1. ODL Extract of UA.ODL

User Agent Management

78

CommandCopy Command Processor Command object for copy opera-
tions.

CommandCreate Command Processor Command object for create opera-
tions.

CommandDelete Command Processor Command object for delete opera-
tions.

CommandModify Command Processor Command object for modification
operations.

EnumUserNames Returns an Enumeration Object of
all users found in the system. Note:
an enumeration object is always a
snapshot.

ORACLE_UserManager Layers / Facade Manager for ORACLE platform
access.

TANGRAM_UserManager Layers / Facade Manager for TANGRAM platform
access.

Ua Superclass for all classes of this pac-
kage

User Represents a single user’s data.

UserController Model-View-Controller Controller for end-user interactions
on the user data.

UserDataController Model-View-Controller Extends UserController.

UserException Intern exception class, thrown by
class User.

UserList List to store objects of type User.

UserListController Model-View-Controller Controller for managing interac-
tions of end-users on a list of user
objects in a list of type UserList.

UserManagerFactory Factory Method Factory for creating a specific Service
Access Manager computational
object.

UserModel Model-View-
Controller / Observable

Functional core of the application.

UserModelMessage Message Message object sent by the model to
its observers while invoking the
update method.

UserView Model-View-Controller Interface for defining signatures
which a view for user data has to
provide

Table 13-1. Classes in Package ‘ua’

Name
Mapping to Design

Pattern
Description

79

14 Terminal Management

The management of terminals in a TINA-C system is the management of Termi-
nal Equipment Agents. TINA-C describes a Terminal Equipment Agent in the
Service Architecture 2.0 as follows:

A Terminal Equipment Agent (TE-A) is defined to model a user sys-
tem as a computational object within the provider domain. It main-
tains minimum information of resource configuration (e.g., access
points, UAPs, stream interfaces, and GSEPs) of a user system. A TE-
A is one of the key computational objects for mobility, since it keeps
tracks of association between a terminal and access points in the pro-
vider domain. Details of how the TE-A can cooperate with compu-
tational objects for connection management (e.g. Communication
Session Manager) to support terminal mobility are for further
study.1

An other description of the TE-A can be found in the behavior section of the
TANGRAM ODL file TEA.ODL and is cited in Figure 14-1.

The package tea contains the classes which model the nested structure of the
PCS enhanced Terminal Equipment Agent (TE-A). Since Java, as an object ori-
ented language, does not provide structures, every structure of the TE-A struc-

1. [Berndt+95], p 6-7.

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

TEA.ODL

behavior
“The Terminal Equipment Agent (TE-A) object
belongs to the set of Infrastructure Capabil-
ity Describing Objects.

It represents terminal equipment in a TINA
system.

Various characteristics of an individual ter-
minal are stored in a TE-A.

Basically, a subscriber or a user requests
creation and deletion of a TE-A.

Since an actual terminal resides in the user
domain, the object which resides in the pro-
vider domain doesn’t execute terminal func-
tions per se. Instead, a TE-A can provide
sufficient
information from a specific terminal to exe-
cute a service.”;

Figure 14-1. ODL Extract of TEA.ODL

Terminal Management

80

ture had to be mapped to classes. The package also contains classes supporting
the used Model-View-Controller pattern as well as various other application sup-
porting classes which represent and mange the TE-A.

An overview of the classes of the package tea and their mapping to the TAN-
GRAM TE-A is given in the following Table 14-1. Also, for a better understanding
of the nested structure of the Terminal Equipment Agent, the mapping to the cor-
responding TANGRAM (Tn) Type is given.

More detailed information on each class can be found in the online documen-
tation2.

2. See “Source Code Documentation” on page 134.

Table 14-1. Classes in Package ‘tea ‘

Classes
Mapping to TANGRAM

Data Type
Mapping to Design

Patterns
Description

CodingAttribute T_Coding_Attribute Models a Coding Attribute which
contains a list of Coding Qualities.

CodingAttributes T_Coding A list of Coding Qualities.

CodingAttributesController Model-View-Con-
troller

Controller for Modification of Cod-
ing Qualities.

CodingQuality T_CodingQuality Class for representing the attributes
of one Coding Quality entity.

EnumCommunicationProtocols T_Comm_protocol Enumeration for predefined proto-
col types.

EnumPresentationSupport T_PresentationSupport Enumeration

EnumSupportedBearer T_Bearer Enumeration

EnumSupportedCodings string Enumeration

EnumSupportedMedia T_Media Enumeration

EnumSupportedMode T_Mode Enumeration

EnumSupportedServices T_ServiceIdList Enumeration

EnumTerminalNames Enumeration for listing available ter-
minals.

EnumTerminalType T_TermType Enumeration for listing available ter-
minal types.

ServiceIdList T_ServiceIdList List of available Services

TEAAbstractManager Abstract Class which defines signa-
tures of Service Access Managers for
Terminals.

TEAManagerFactory Factory Method Factory for creating a special Service
Access Manager

TEAManagerTANGRAM Service Access Manager for TAN-
GRAM platform.

TeA Superclass for all tea objects of this
package.

Part 3: Implementation

81

TeaModel Model-View-Con-
troller

TeaModelMessage Message Message class for passing while
invoking update of observers

TeaProducer Shopper Converter

TeaProducerContainer Shopper Converter

TeapConstants Shopper Converter

TermAttributes T_TermAttributes

TermConnAttributes T_TermConnAttributes

TermInfo T_TermInfo

TermServAttributes T_TermServAttributes

TermState T_TermState

Terminal T_Terminal Computational Object TE-A

TerminalController Model-View-Con-
troller

Controller for modification of a ter-
minal object. Used in views.

Table 14-1. Classes in Package ‘tea (Continued)‘

Classes
Mapping to TANGRAM

Data Type
Mapping to Design

Patterns
Description

Terminal Management

82

83

15 Location Management

This chapter lists the classes needed to build the management tool for location
management. For more detailed information, please refer to the provided online
documentation. All classes listed here can be found in the package
de.gmd.fokus.ice.pcs.mngmt.lcxt.

More detailed information on each class can be found in the online documen-
tation1.

1. See “Source Code Documentation” on page 134.

Table 15-1. Classes in Package ‘lcxt’

Class
Mapping to Design

Patterns
Description

AbstractLCxtManager Redefines Methods of Abstract Man-
ager concerning the special needs of
the Local Context computational
object.

CommandCopy Command Processor Command object for copy opera-
tions.

CommandCreate Command Processor Command object for create opera-
tions.

CommandDelete Command Processor Command object for delete opera-
tions.

CommandModify Command Processor Command object for modification
operations.

LCxt Represents a location with its associ-
ated terminals.

LCxtController Model-View-Controller Controller to control access to Local
Context data.

LCxtDataController Model-View-Controller Controller to control access to Local
Context data. Extends LCxtControl-
ler.

LCxtListController Model-View-Controller Controller for list containing loca-
tions.

LCxtModel Model-View-Controller Functional core of the application.

LCxtModelMessage Message Message object sent by the model to
its observers while invoking the
update method.

LCxtSamFactory Factory Method Factory for creating a specific Service
Access Manager computational
object.

LCxtSamTANGRAM Service Access Manager to the TAN-
GRAM platform.

Par t 3
Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation

Location Management

84

LCxtView Model-View-Controller Interface for defining signatures
which a view on Local Context Data
has to provide.

ListOfTerminals

Location Representation of a location.

Table 15-1. Classes in Package ‘lcxt’ (Continued)

Class
Mapping to Design

Patterns
Description

85

16 Registration Management

The following table presents the classes used to build the management tool for
the management of registrations. This tool allows registrations to be managed. It
can also be used for manual registrations. The classes can be found in the package
de.gmd.fokus.ice.pcs.mngmt.rs.

More detailed information on each class can be found in the online documen-
tation1.

1. See “Source Code Documentation” on page 134.

Table 16-1. Classes in package ‘rs’

Class
Mapping to Design

Patterns
Description

AbstractRegServerManager Redefines Methods of Abstract Man-
ager concerning the special needs of
the Registration Server Manager
computational object.

RegServerModel Model-View-Controller Functional core of the application.

RegServerModelMessage Message Message object sent by the model to
its observers while invoking the
update method.

RegServerSamFactory Factory Method Factory for creating a specific Service
Access Manager computational
object.

RegServerSamTANGRAM Layers / Facade Service Access Manager to the TAN-
GRAM platform.

UserRegistration Representation of a user registration.

Par t 3
Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation

Registration Management

86

87

17 Utilities

This chapter lists the classes which are located in the package ‘util’. The utility
classes are helper classes which are not specialized to serve only the management
toolset. This package provides for example classes to debug any kind of software
written in Java.

In addition to debugging classes the package provides classes for program-
ming by contract. Programming by contract means, that a routine assumes certain
preconditions and guarantees certain preconditions and postconditions1. During
implementation, those methods help to check for those conditions and to detect
programming flaws.

More detailed information on each class can be found in the online documen-
tation2.

17.1 Classes

Table 17-1 lists all classes of the package util. For more detailed information
please refer to the online documentation.

17.2 Interfaces

So far there is only one interface definition in the util package.

1. [Meyer94]
2. See “Source Code Documentation” on page 134.

Table 17-1. Classes in Package ‘util’

Name Description

Debugger Abstract class. Provides signatures for concrete debug-
ging classes like StandardDebugger or ToFileDebugger.

Ensure Provides a set of static methods for programming by
contract.

Environment Provides a set of static methods concerning environment
information.

Pictures Provides a set of static methods concerning the retrieval
of pictures.

Require Provides a set of static methods for programming by
contract.

SilentDebugger This debugger is used when no debugging output at all
is desired.

StandardDebugger Prints all debugging messages to the standard output.

ToFileDebugger Prints all debugging messages into a given file.

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

Interfaces Utilities

88

Table 17-2. Interfaces in Package ‘util’

Interfaces Description

Debuggable Provides a signature to set the debugger.

89

18 Graphical User Interfaces

This chapter presents the implemented classes of the different views. Beginning
with a table of commonly used classes for displaying data, there follows sections
listing and explaining the classes used to implement the User Agent, the Local
Context, the Terminal Equipment Agent and the Registration Server Manage-
ment tool.

More detailed information on each class can be found in the online documen-
tation1.

18.1 Shared Views and Dialogs

The classes listed in Table 18-1 are classes that are used by different components
of the management toolset.

1. See “Source Code Documentation” on page 134.

Table 18-1. Classes in Package ‘dialog’

Class Names Description

Box Utility for representing the dimension of a rectangle.

DlgAbout Dialog window for presenting the mission statement of an
application (cf. Figure 20-4 on page 102).

DlgListOfLocations Dialog window for presenting a list of locations. Allows for
selection and management of elements in the list.

DlgListOfUser Dialog window which presents a list of users. Same function-
ality as DlgListOfLocations.

DlgListTerminalLabels Dialog containing list of terminals

DlgLoggingOptions Dialog for setting device for logging output (cf. Figure 20-3
on page 102).

DlgTellUser Dialog to inform user about problems, errors etc.

GrpBoxAvailableUser Groupbox to display a list of users

GrpBoxListOfLocations Groupbox to display a list of locations

GrpBoxListOfTerminals Groupbox to display a list of terminals

GrpBoxTerminalInfos Common Information about a terminal, i.e. TE-A and Ter-
mInfo fields

MgmtApplet Base class for applets

MgmtDialog Base class for dialogs

MgmtFrame Base class for frames

MgmtLFLGroupBox Base class for GroupBoxes

MgmtPanel Base class for panels

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

User Agent Graphical User Interfaces

90

18.2 User Agent

The User Agent management application is a very simple one. The application
provides a listbox to select a user and a groupbox to display and modify user
data. The listbox to select a user is used in different applications and therefore can
be found in the dialog package.

18.3 Local Context

The Local Context management application is arranged using a tabbed notebook.
Two sheets are provided, one for location information and one for associating a
location with terminals.

18.4 Terminal Equipment Agent

The Terminal Equipment Agent management application presents a set of views
and is the most extensive application concerning the used components.

PanelUserList Panel to hold groupbox GrpBoxAvailableUser

Table 18-2. Classes in Package ‘viewUA’

Class Name Description

GrpBoxUserInfo Container for holding all user related information. Can be
used as plug-in-group for user data into other applications.

Table 18-3. Classes in Package ‘viewLCxt’

Class Name Description

GrpBoxLCxt Container to display all information about a location.

GrpBoxTEAsOfLCxt Container to display list of all terminals of a given location.

PanelLCxt Container to display a list of available terminals to add to a
chosen Local Context.

PanelLocations Container to display a list of Locations and their attributes.

Table 18-4. Classes in Package ‘viewTEA’

Class Name Description

DlgCodingQuality Dialog to set the coding quality.

Table 18-1. Classes in Package ‘dialog’

Class Names Description

Part 3: Implementation Registration Server

91

18.5 Registration Server

The Registration Server management application consists of some dialog win-
dows and three different views.

DlgSupportedCodings Dialog to set and choose the supported codings.

GrpBoxCodingName Groupbox to display a coding name.

GrpBoxCodingQuality Groupbox to display coding quality parameter.

GrpBoxConnectionControl Groupbox to display connection control parameter.

GrpBoxListOfCodingNames Groupbox to display a list with coding names.

GrpBoxServiceControl Groupbox to display service control parameter.

GrpBoxTerminalControl Groupbox with checkboxes to set the attributes
has_connection_control_capabilities and
has_service_control_capabilities

GrpBoxTerminalName Groupbox to display the name of the actual selected terminal

GrpBoxTerminalState Groupbox with four Checkboxes. Displays the actual state of
the terminal. i.e. busy, idle, up or down.

TerminalMediator Mediator class for centralized component management.

Table 18-5. Classes in Package ‘viewRS’

Class Name Description

DlgRemoveInfo Dialog to display hints before deleting registrations.

DlgWarning Dialog for warnings.

GrpBoxRegisteredUsers Groupbox to display all registered users.

GrpBoxRegistrationDeletion Groupbox to set parameter for registration deletion.

GrpBoxWarning Groupbox used by class DlgWarning

Table 18-4. Classes in Package ‘viewTEA’

Class Name Description

Registration Server Graphical User Interfaces

92

93

19 Java’s Applications and
Applets

This chapter discusses the differences between Java’s applications and applets
and what to consider while designing both of them. I will give an overview of my
experiences building a management application as an applet and finally I will
describe the steps needed to build CORBA-based applets.

19.1 The Usage of Applications and Applets

In Java, two kinds of executable binaries exist: applications and applets. Applica-
tions are an equivalent to stand-alone, ‘old-fashioned’ software. Applets are soft-
ware that run inside a Java-enabled browser like Netscape’s Navigator,
Microsoft’s Internet Explorer or Sun’s HotJava.

The differences between Java applications and Java applets—at first sight—are
slight; while applications are executed by using the Java interpreter java, applets
can be run outside Java-enabled browsers using the Java interpreter appletviewer.
Java’s applications and applets also need different methods: where Java’s appli-
cations need the main method, which serves as a starting point for the interpreter,
the applets need the init method as starting point. An applet is a Java class which
extends java.applet.Applet. A class which extends java.applet.Applet and also has
a main() method is both an application and an applet.

Using different methods as starting points enables one to define different ini-
tialization methods. It is possible with in the same class to define one main method
and one init method. Thus, permitting the distribution of only one ‘executable’ for
both kinds of software. This may seem easy, but is deceptive; for the writing of an
applet or an application there is more that must be taken into consideration.

First, an application has more visual elements to communicate with a user
then an applet. Applets can not have menus and they also should not provide
buttons to exit. You do not exit an applet like an application. You quit an applet
by choosing a new page or by closing the browser.

Secondly, it should be considered that an applet will be loaded over the inter-
net which can take far more time than just loading a local application from your
host. Thus, an applet should be made as lean as possible. As few graphical ele-
ments should be used as possible, such as background pictures, to prevent
extended loading time. In general, an applet should be kept as simple as possible.

Thirdly an applet can be divided into smaller parts which can be loaded when
ever necessary. It is even possible to put links on the Web page which let the user
retrieve those parts at will.

All of those reasons—and more, as are detailed in the following section—led
me to the decision to distinguish between applications and applets.

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Implementation
Par t 3

The Management Toolset Used With Applications and Applets Java’s Applications and Applets

94

19.2 The Management Toolset Used With
Applications and Applets

All graphical user interfaces of the management toolset are available as applica-
tions. The toolset is built in such a way that all components check if they are run-
ning inside a Java application or a Java applet. Therefore, there is no need to make
any changes in the basic components if they are to be used in applets.

The executables to start a management application or applet for each manage-
able computational object is located in its own package. Both kinds of executables
are located inside the package de.gmd.fokus.ice.pcs.mngmt.uap.

After finishing the implementation of the management applications, the inte-
gration of the toolset in applets was started. The first intension was: add the init
method, eliminate the menu and run it in a browser. But these steps alone were
not adequate for using an applet together with CORBA. Several problems
occurred that must first be solved before it is possible to implement further exten-
sions of the management toolset as applets.

Domain B

WWW Server1.

2.

3.

(1) The end-user sends a request to the WWW server to retrieve a Web page. (2)
The WWW server sends the Web page to the user’s host. The Web page includes
a management applet which will also be loaded on the user’s host and executed
there. (3) The management applet, now on the user’s host, tries to contact the
TANGRAM DPE Gateway. This is not permitted in a Netscape browser!

Figure 19-1. Management Applet Loaded With a Netscape Browser via the
Internet

Domain A

Other Domain

TANGRAM DPE
Gateway

TANGRAM
DPE

Part 3: Implementation Problems While Using Applets

95

19.3 Problems While Using Applets

19.3.1 Connecting Different Hosts

Contrary to the way applications function, applets can be loaded over the internet
from any point. Applets that are loaded over the internet are untrusted. Before
you executing an applet for the first time, one is not sure if the applet will do any
malicious action like deleting files. For that reason, applets run in a very restrictive
environment witch permits actions such as1:

■ Read files on the local system.
■ Write files to the local system.
■ Delete files on the local system.
■ Rename files on the local system.
■ Create a network connection to any computer other than the one which the

applet was loaded.
■ Listen for or accept network connections on any port of the local system.

and many more.

The most interesting points in terms of management applications are the two
last ones. In the distributed environment of the PCS in TINA project, a local host
is used as a Web Server2. The TANGRAM DPE Smalltalk Image, which serves as
a Gateway to the TANGRAM DPE, is available on a different host3. Therefore, to
retrieve any computational object, a browser has first to connect the Web server
in order to load the Web page with the management applet. The management
applet checks the IOR4 which contains information about how and where to
retrieve objects. In this case, the objects were located on an other host which had
to be connected by the applet. This is not permitted in the Netscape browser and
causes a security exceptions which prohibits the applet to continue (cf. Figure 19-
1).

To solve this problem, a server has to be used, which has to run on the same
host the Web server is running on.

19.3.2 Loading CORBA Functionalities

An other problem that occurs when using an applet is in the performance
while loading an applet. It takes too long to load all needed CORBA functional-
ities onto the user’s host. My suggestion for solving the performance problem is,
to implement the Service Access Layer completely as a server which will be con-
tacted by the Service Access Manager Layer. In that case it would be no need to
load any CORBA functionalities onto the user’s host. The applet would be shrunk
down from a ‘fat client’ to a ‘thin client’.

1. [Flanagan96], pp. 197-198
2. As I am writing this, the Web server’s name is hughes.
3. Until April, the servers name was bell.
4. See “The Inter-ORB Communication Architecture” on page 36.

Possible Solutions Java’s Applications and Applets

96

19.4 Possible Solutions

19.4.1 Usage of A Gateway-Server

To prevent an applet from contacting an other host than the one it is loaded from,
a server has to run on the WWW server which serves as a gateway to other hosts.

With Visigenics Visibroker for Java, it is very easy to implement a server if you
carry out the following steps. First certain methods needed for the server have to
be identified. Next the IDL definition for the server has to be written and finally,
after running the idl2java compiler, the skeletons have to be filled with ‘flesh’ to
implement the server.

19.4.2 Usage of ‘Thin Clients’

Instead of loading a ‘fat client’ with full CORBA functionality, the management
applet should only consist of the application layer and the Service Access Man-
ager Layer. The Service Access Layer, which consists of the API functionality
must be locate on the WWW server host and act there as a gateway.

Applet in
Netscape
Browser

Management
Server

WWW Server

Application

Smalltalk
Image for
TANGRAM
DPE

Other HostEnd-User’s Host

Figure 19-2. Using an Additional Server as Gateway to Other Hosts

Figure 19-3. Management Applets as ‘Thin Clients’

Application
Layer
Service Access
Manager Layer

End-User’s Host WWW-Server

Service
Access
Layer

ORB

TANGRAM
DPE

Par t 4

Vie ws–The
Graphical User

Interface

This part of the book introduces the graphical user interface of
the management toolset as presented to an end-user. The usage
for each management application will be explained step by step.

This part can be seen as a user’s manual.

TINA

PCS in TINA

TANGRAM

CORBA

Summary

Outlook

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Background Implementation Conclusion Appendix

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design

User Agent

TE-A

LCxt

Registration
Server

User’s Manual

99

20 User Data Management

This chapter describes the usage of the management toolset application for man-
aging User Agents.

20.1 The PCS User Agent

The PCS User Agent is a s-independent component representing a user in the ser-
vice provider domain. It acts on behalf of the user, and may be seen as a simple
intelligent agent-like component. The management application for user data con-
figuration enables the user to create, delete and modify a user agent.

The User Data Management application enables the user to create user data
computational objects (PCS User Agents) as well as to modify and delete data,
which is the visible part of the User Agent.

20.2 Usage

The User Data Management application is located in the package
de.gmd.fokus.ice.pcs.mngmt.uap.appUA and is named UserConfigurationTool.
A script file to start the UCT is also provided1.

20.2.1 How to Start

To start the User Data Management application:

1 Edit the script file to fit your personal environment.

This step is only needed if you start the User Data Management Application
for the first time.

1. An example script file is presented in Section 26.4 on page 130.

User Agent

TE-A

LCxt

Registration
Server

User’s Manual
Par t 4

Figure 20-1. Main Window ‘User Configuration’

Usage User Data Management

100

2 Start the script file.

After you have started the script file, the dialog for management and configu-
ration of the user data as shown in Figure 20-1 will appear.

20.2.2 Listing of all Available Users in the System

After starting the application, the list of available users is empty. To retrieve a list
of all available users in the system:

Press the ‘List User’ button.

20.2.3 Getting User Data

To retrieve user data:

1 First list all the users in the system by pressing the List Users’ button.

2 Choose a user in the list with the mouse or the keyboard.

3 Press spacebar on the keyboard or click with the mouse on the selected
user from the list.

User data will be shown in the right “User’ group.

20.2.4 Creating a New User Agent

To create a new user, you have to choose a unique user ID.

1 Insert a unique user id in the ‘User Id’ field.

2 Edit the other fields appropriate to the new user’s data.

3 Press the ‘New’ button.

The list of ‘Available Users’ in the system is empty after starting the application.

Part 4: Views–The Graphical User Interface Usage

101

20.2.5 Modify User Data

To store modified user data select the button ‘Modify’.

1 List all available users.

2 Select a user from list.

3 Change user data.

4 To save changes, press the ‘Modify’ button.

20.2.6 Undo and Redo

The User Data Management application provides an unlimited undo and redo
command. Each available undo and redo command is available under the menu
entry ‘Edit’. See also Figure .

The ‘Edit’ menu is a ‘Tear-Off’ menu: that means you can tear off the menu
from the main menu and put it anywhere on your desktop. Tear-off menus are
only available under Sun Solaris systems.

To create a new User Agent, you need a non existing User ID.

Figure 20-2. Menus ‘Undo’ And ‘Redo’

Undo, available after deleting a
user entry.

Redo, available after undo of previ-
ous deletion.

Usage User Data Management

102

20.2.7 Logging

The User Data Management application provides a logging function. Verbose
information about program actions can be sent either to:

■ Standard output,
or

■ An arbitrary logfile.

To change the logging output

1 Select Options from the menu and then select ‘Logging’.

2 Set the desired options in the dialog shown in Figure 20-3.

While starting the application, you can set the logging options using the
DEBUG mode flag (see the example script file shown in Figure 26-1 on page
131).

20.2.8 Dialog About

Every Management Application has an ‘About’ dialog to display information
about the application.

Figure 20-3. Dialog ‘Logging Options’

Figure 20-4. Dialog ‘About’

103

21 Terminal Equipment
Management

This chapter describes the usage of the management toolset application for man-
aging Terminal Equipment Agents.

21.1 The PCS Terminal Equipment Agent

A Terminal Equipment Agent (TE-A) represents a user system within the pro-
vider domain. A TE-A maintains minimum information on resource configura-
tion of a user system, e.g. access points, user applications, stream interfaces and
Generic Session Endpoints. A TE-A is one of the key computational objects for
mobility, since it keeps track of associations between terminals and access points
in the provider domain1.

The Terminal Management Application makes possible the creation and con-
figuration of the PCS enhanced TINA Terminal Equipment Agent (PCS-TE-A). It
includes several specific pieces of information for modelling an end user system.

1. [Berndt+95]

User Agent

TE-A

LCxt

Registration
Server

User’s Manual
Par t 4

Figure 21-1. Main Window ‘Terminal Management Application’

Usage Terminal Equipment Management

104

21.2 Usage

The Terminal Management application is located in the package
de.gmd.fokus.ice.pcs.mngmt.uap.appTEA and is named TEA. A script file to
start the Terminal Management application is also provided2.

21.2.1 How to Start

If you start the Terminal Management application for the first time, you may have
to edit the start script file.

1 Edit the start script file for the Terminal Management application.

This step is only needed if you start the Terminal Management Application for
the first time.

2 Start the Terminal Management application with the start script file.

21.2.2 Listing of all Available Terminals of the System

In order to list all available terminals of the system, you must open the ‘Terminal
Selection’ dialog.

1 Press ‘List Terminals’ button.

The button is located at the bottom of the application. After pressing the but-
ton, the dialog window shown in Figure 21-2 will open.

2 Press ‘List’ button.

If you have opened the dialog for the first time, the list will be empty. After
you have retrieved the list, you should be aware that the list is always a snap-
shot of the system taken at the time of receiving the data.

21.2.3 Getting Terminal Data

To get the data of a special terminal, you have to either choose one from the list
of available terminals or edit the ‘Current Terminal’ field.

2. An example script file is shown in Figure 26-1 on page 131.

Figure 21-2. Dialog ‘Select Terminal’

Part 4: Views–The Graphical User Interface Usage

105

Choosing a terminal from the list

To choose a terminal from the list of available terminals, you must list all available
terminals of the system.

1 Press ‘List Terminal’ button in main application.

2 Press ‘List’ button in the dialog titled ‘List of available Terminals’.

3 Select a terminal from the list.

The terminal data will be updated automatically in the main application.

Insert a terminal name in the ‘Current Terminal’ edit field.

If you know the name of the terminal you want to display, you can insert the
name directly into the ‘Current Terminal’ field and then activate the query for the
terminal data.

1 Enter the name into the ‘Current Terminal’ field.

2 Query terminal data with the ‘Select’ button.

If you entered the name of an existing terminal, the terminal data will be dis-
played.

21.2.4 Creating a New Terminal Equipment Agent

To create a new Terminal Equipment Agent (TE-A) you need at least the unique
label, which is the identifier for a TE-A in the provided system.

1 Enter a new label in the ‘Label’ field.

The field ‘Label’ is located in the ‘Common Terminal Information’ group (Fig-
ure 21-3).

2 Edit other terminal information data.

3 Press the ‘New’ button.

Figure 21-3. Group ‘Common Terminal Information’

To create a new terminal, an unique label is required.

Usage Terminal Equipment Management

106

21.2.5 Modifying Terminal Data

To modify terminal data:

1 Select a terminal.

For how to select a terminal see Section 21.2.3.

2 Make changes to the terminal data.

3 Press the ‘Modify’ button.

If you do not press the ‘Modify’ button after changing the terminal data, all
changes will be lost after selecting another terminal or closing the application.

Figure 21-4. Group ‘Control’

With the ‘Control group the access to the groups ‘Service Control’ and ‘Connection Control’
can be toggled on or off.

Part 4: Views–The Graphical User Interface Usage

107

21.2.6 Set Codings of Connection Control

For controlling the ‘connection control’, the Terminal Equipment Agent provides,
among other things, a field called ‘Codings’. To insert a supported coding you can
use the dialog title ‘Supported Coding’.

1 Select the ‘Codings’ button in the ‘Connection Control’ group.

If the button cannot be pressed, you have to check the group ‘Control’ and
activate ‘Connection’ (Figure 21-4).

As a result, the dialog to select supported codings, shown in Figure 21-5, will
be opened.

2 Change to the dialog titled ‘Supported Codings’.

3 Select codings from the ‘Available’ list.

Each selected item will be placed in the ‘Selected’ list. To de-select an item,
click on it in the list ‘Selected’.

4 To insert the chosen codings into the ‘Codings filed from the ‘Connec-
tion Control’ group, press ‘OK’. To reject the selection, press ‘Cancel’.

Figure 21-5. Dialog ‘Supported Codings’

Usage Terminal Equipment Management

108

21.2.7 Set Coding Quality of Service Control

The PCS enhanced TE-A provides the ability to set the codings and their qual-
ity parameter for the service control.

To set codings an their quality parameter, you must use the ‘Coding Quality’
dialog.

1 Press the ‘Coding’ dialog from the ‘Service Control’ group.

If the button cannot be pressed, check the group ‘Control’ and activate ‘Serv-
ice’ (Figure 21-4).

The dialog to edit coding quality, shown in Section 21-6, will be opened.

2 Insert codings and their parameters.

3 Choose ‘OK’ to accept or ‘Cancel’ to dismiss.

Note that you have to save modification with the ‘Modify’ button before you
select a different terminal or else all changes will be lost.

21.2.8 Undo and Redo

Undo and redo operations are not supported in this version of the Terminal Man-
agement application.

21.2.9 Logging

Logging options have to be set inside the start script file. For more information
about parameters to set inside the start script file see Section 26.1 on page 129.

Figure 21-6. Dialog ‘Coding Quality’

109

22 Location and Location
Context Management

This chapter describes the usage of the management toolset application to man-
age the PCS Local Context.

22.1 The PCS Location

The knowledge about a local context supports the selection process of finding an
appropriate terminal to address an end user, without forcing him to explicitly
register at a terminal. Currently, TINA only supports the registration at terminals.
TINA does not consider registrations at locations. Registration at terminals limits
the set of usable terminals to those the user manual is registered with.

A location describes a distinguished region, like a room or a zone. Inside a
location, a certain set of terminals can be located. The set of terminals associated
with a location is called the local context, which are represented by the computa-
tional object LCxt. The management application for location and local context
management provides facilities to manage those computational objects.

The PCS-enhanced Access Session supports user registration at locations.
Through user registration at locations, the system associates users with specific
well known locations, thereby minimizing the required user cooperation to keep
the registration data up to date. Normally, a location can be mapped to a room,
which is described by the surrounding walls. In some cases it may be desirable to
use imaginary zones to describe a location.

22.2 The PCS Local Context

The PCS component Local Context (LCxt) associates a set of terminals with a loca-
tion. This location capabilities describe the context of a user. Each Local Context
represents a specific location in the user domain. A local context keeps the refer-
ences to the terminal equipment of that location. Thus, the PCS-enhanced Usage
Context object is enabled to find terminals related to these specific locations,
which in turn enables it to select an appropriate usable terminal.

22.3 Usage

The Location Management Application user application is located in the package
de.gmd.fokus.ice.pcs.mngmt.uap.appLCxt and should be started by using a
script file. An example script file to start the LMA can be found in Section 26.4 on
page 130.

User Agent

TE-A

LCxt

Registration
Server

User’s Manual
Par t 4

Usage Location and Location Context Management

110

22.3.1 How to Start

To start the Location Management application:

1 Edit the script file to start the application concerning your personal
environment.

This step is only needed if you start the Management Application for the first
time.

2 Start the script file.

After you have started the script file, the dialog, shown in Figure 22-1 will be
displayed.

22.3.2 Listing of all Available Terminals in the System

To list the available locations in the system:

Select ‘List’ button.

22.3.3 Getting Location Data

To get the data of a location:

1 List all available locations of the system.

2 Choose a location from the list.

To retrieve the associated data press the space bar of your keyboard or click
with the mouse on the desired location in the list.

Figure 22-1. Main Window ‘Location Configuration Management’

Part 4: Views–The Graphical User Interface Usage

111

22.3.4 Creating a New Location

To create a new location:

1 Select a location ID that is not used in the system.

2 Edit the location data.

3 Select button ‘new’.

22.3.5 Modifying a Location

To modify location data:

1 Get location data.

2 Edit location data.

3 To save modifications press ‘Modify’ button.

22.3.6 Deleting a Location

To delete a location:

1 Select a location from the list.

2 Press ‘Delete’ button.

Note: There is no warning before deletion. To undo a deletion, follow the steps
listed in Section 22.3.8.

22.3.7 Configuring a Local Context

To configure a local context:

1 Select a location.

2 Change to the ‘Terminal’ dialog.

To change to the ‘Terminal’ dialog select the tabbed panel labelled ‘Terminals’.
The dialog window depicted in Figure 22-2 will be displayed.

3 List all available terminals of the system.

To list all available terminals of the system, press the ‘List Available Terminals’
button.

4 To add a terminal to the location, select a terminal from the list of avail-
able terminals, and press the ‘Add’ button.

5 To remove a terminal from a location, select the terminal from the ‘Ter-
minals in Location’ list and then press the ‘Remove’ button.

Usage Location and Location Context Management

112

22.3.8 Undo and Redo

The location management application provides an unlimited undo and redo com-
mand. Each available undo and redo command is available under the menu entry
‘Edit’. See also Figure on page 101.

The ‘Edit’ menu is a ‘Tear-Off’ menu. That means that you can tear off the
menu from the main menu and put it anywhere on your desktop. Tear-off menus
are only available under Sun Solaris systems.

22.3.9 Logging

The UCT provides a logging function. Verbose information about program
actions can be sent either to

■ Standard output,
or

■ An arbitrary logfile.
The logging option of the LMA user application can only be set using the start

parameter ‘DEBUGMODE’. For more information about start parameter see Sec-
tion 26.1 on page 129.

Figure 22-2. Dialog ‘Add Terminals to a Location’

113

23 Registration Management

The Registration Management Application allows you to retrieve information
about registered users at locations as well as to register users manually at loca-
tions. Furthermore, the Registration Management Application enables the you to
delete all registrations in a specific time lapse.

23.1 The PCS Registration Server

User Registration is the activity allowing the user to register his current location
within the Personal Communications Support in PCS in TINA. Thus enabling him
system-wide personal mobility. The user can register either manually or alterna-
tively automatically by the Registration Server that locates a user and keeps the
registration information of the user updated, according to his position. In other
words the PCS Registration server automatically keeps track of the location of a
user and therefore enables the system to select an appropriate terminal next to the
user’s position.

23.2 Usage

The Registration Management Application is located in the package
de.gmd.fokus.ice.pcs.mngmt.uap.appRS and is named RegServer. A script file
to start the application is also provided1.

1. An example script file is presented in Section 26.4 on page 130

User Agent

TE-A

LCxt

Registration
Server

User’s Manual
Par t 4

Figure 23-1. Dialog ‘Registration Management’

Usage Registration Management

114

23.2.1 How to Start

To use the Registration Server Management Application:

1 Edit the start script file to fit to your environment.

This step is only needed if you start the Registration Management Application
for the first time.

2 Start the application with the script file.

After you have started the script file, the dialog for the management and con-
figuration of the user registrations as shown in Figure 23-1 will appear.

23.2.2 Listing of all Registered Users

To list all registered users:

Press the ‘List’ button.

23.2.3 Registering a User

To register a user manually:

1 Press the ‘Users’ button in the ‘User Registration’ group.

A dialog with a list of users of the system will be opened.

2 Change to the ‘Users’ dialog.

If the list is empty, you have to query for the user with the ‘List’ button.

3 Select a user.

The selected user will be inserted automatically in the field ‘Personal ID’ in the
main application.

4 Change to the main application.

5 Press the ‘Locations’ button in the ‘User Registration’ group.

A dialog with the list of all locations will be opened.

6 Change to dialog ‘Locations’.

Figure 23-2. Group ‘User Registration’

Part 4: Views–The Graphical User Interface Usage

115

If the list is empty, you have to query for the locations with the ‘List’ button.

7 Select a location.

The selected location will be inserted automatically in the field labelled ‘Loca-
tion ID’ of the main application.

8 Change to the main application.

9 Press the ‘Register’ button.

The registered user will be shown in the list of registered users.

23.2.4 De-register a User

To de-register a user

1 List all registered users.

2 Select a user from the ‘Registered Users’ list.

3 Press the ‘De-register’ button.

23.2.5 Purge Registrations

To purge registration in a specific lapse of time:

1 Enter time from which to start purging.

Figure 23-3. Dialogs ‘Users’ and ‘Locations’

nowpast 1 month2 months

1 month, 6 days, 3 hours

Input: 1 month, 6 days and 3 hours; all manual registrations in the grey shaded part will be
deleted.

time

Usage Registration Management

116

You enter the time in the groupbox ‘Timedependent Manual Registration
Deletion’ (see Figure 23-4). If you set all values to zero, all registration will be
purged. If you enter 3 hours, 6 days and 1 month all registration older than
one month plus one day plus 2 hour starting from the actual time will be
purged.

2 Press button ‘Remove’.

Note that there is no Undo for purging.

Figure 23-4. Group ‘Timedependent Deletion of Registrations’

Par t 5

Conc lusion

This part of the book gives a summary of the design and imple-
mentation of the management toolset. This includes a discussion
about problems which occurred during the work and their solu-
tions. This part closes with a look at ideas for further extensions
of, and changes to the management toolset as it is presented for
this project.

TINA

PCS in TINA

TANGRAM

CORBA

User Agent

TE-A

LCxt

Registration
Server

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Background Implementation User’s Manual Appendix

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design

Summary

Outlook

Conclusion

119

24 Summary

This diploma thesis presents the design and implementation of a generic man-
agement toolset for a set of PCS components which are located in a distributed,
TINA compliant processing environment. A set of four applications are imple-
mented. Each application is able to manage a particular computational object of
the PCS in TINA environment and is built using small, independent, pluggable,
and reusable components. Some of those components are used in more than one
application. This also demonstrates their reusability.

The management toolset is designed using a three layer architecture. This aids
in building applications which are detached from their underlying platforms.
Using this architecture also provides a simple way to exchange an API without
affecting the main part of an application. A further advantage of the layering con-
cept is that it permits the switching of access from one specific platform to
another—during runtime. This is assuming that an equivalent API for the desired
platform exists and a corresponding Service Access Manager is implemented.

The management applications have been available to other programmers of
the PCS in TINA project since February, 1997, and have been used successfully
since then.

24.1 Design

The design of this thesis project was highly influenced by the recent movement
in design patterns. The design patterns have, in my opinion, helped to improve
my design dramatically. Nevertheless, designing does not end with the start of
the implementation phase; during the implementation phase, design flaws that
have gone unnoticed often become visible. In every time-limited project, one has
to draw a line when it comes to re-design decisions during the implementation
phase; because there will always be something one can make better. A design is
ever subject to improvement—and my design is no exception. In the following
chapter, I will list some points where improvements could made.

In the words of Antoine de Saint Exupéry:

You know you’ve achieved perfection in design not when you have
nothing more to add, but when you have nothing more to take
away1.

However, I think that the design of this thesis project presents a valuable
architecture which can be applied to future management applications.

1. Found in [Gosling95]

Summary

Outlook

Conclusion
Par t 5

Implementation Summary

120

24.2 Implementation

During the implementation phase, the efficiency of the design became obvious.
For instance, less and less time was needed for implementing applications with
every new application which could make use of the existing toolset components.
The implementation of the Registration Server management application, which
was the last one, took only a week.

Impacts on Implementation Cycles

The first application to be built was the User Agent management application. All
possible aspects of the design were applied to this application. For example, the
User management application is the only one which allows the changing of log-
ging output during runtime. Note that logging or redo and undo functionalities
were not part of the requirement specifications for this thesis project.

The second application to be executed was the Terminal Equipment manage-
ment application. Due to its complex data structure, the implementation of this
application was very time consuming. With the time limitations on the thesis
project in mind, I made the decision not to implement redo and undo functional-
ities. Even though the Terminal Equipment Agent management application was
more complicated to implement; it took, relatively speaking, less time to finish
than the User Agent management application.

The third program to be implemented was the Local Context management
application and finally, the Registration Server management application.

The Impact of Java

The programming language I used, Java, had not been available for more than a
year at the start of this project. In the course of working on the project, I rapidly
became acquainted with this object oriented programming language, which also
serves certain classes that support design patterns. Java helps programmers to
avoid flaws and errors in a very clever way. Regardless of the fact that Java is an
interpreted language and is therefore significantly slower than the object oriented
language C++, it pays to use Java and to wait for new versions which are prom-
ised to be much improved in performance.

Usage of Java’s Automatic Source Code Documentation

For the source code documentation of the sources of this project, I used Java’s tool
javadoc, which generates an automatic source code documentation in the HTML
format. The usage of this tool helps—among other things—to improve imple-
mentation decisions in the usage of keywords like public or protected. In using
this tool, the impact of such keywords are revealed to the programmer.

Usage of CORBA

In addition to Sun’s Java Development Kit, I used Visigenic’s Visibroker for Java.
This ORB implementation can be quickly comprehended and used after a very
short lead time to get familiar with it. Its usage is quite simple and implementing
a server takes very little effort.

Part 5: Conclusion Experiences, Problems and Recommendations

121

24.3 Experiences, Problems and Recommendations

24.3.1 Flaws in Java

It has been stated that Java is a very recent programming language. Due to its
youth, it has many areas which could stand improvement and it even has a cer-
tain amount of bugs. For example, after several hours of testing I became aware
of some limitations and flaws in the Java Date class. Another weakness is appar-
ent in the unpredictable behavior of the expansion of lists. In order to better reg-
ulate the height of the lists, I put them in the more disciplined panel object, which
is capable of maintaining a size limitation on the lists.

Recommendation: It is very important to keep track of the bugs with the bug
list, provided by Sun over the internet.

24.3.2 Converting Applications to Applets

As mentioned in a previous chapter2, the security restrictions of the Netscape
browser present some problems to be solved when trying to use a Java applica-
tion as an applet. With the first attempts to convert my applications, it became
obvious that more time was needed for preparation, testing and designing than I
had previously estimated, and than was available for this thesis project. Netscape
security restrictions make it necessary to build a special server for providing
access to others hosts than the one first contacted.

While defining CORBA interfaces in IDL for specifying a server, I discovered
to my surprise, that the IDL does not support derived exception classes—to
which category all of my classes belong. This makes it necessary to re-write all
exceptions classes used in the management toolset, as far as they are to be used
on the server side.

24.3.3 Performance

To test my applications, I built a list of locations with more than two hundred
entries and saved them in the TANGRAM platform. This uncovered a perfor-
mance fault in the system; retrieving the locations list took two to three minutes—
an absolutely unacceptable length of time.

The source of the problem was in using the Smalltalk ORB to the C++ ORB.
The Smalltalk ORB builds the list while using special function calls of the C++
ORB. To build a single entry, several remote calls have to be executed which
results in the long waiting time.

24.3.4 Using a Graphical User Interface Builder

For the design of the graphical user interface, I used a special GUI builder, Rogue-
Wave’s JFactory. All in all, I was very disappointed with this tool, which had such
promise as a a project supporting tool. Making changes in the code is very awk-
ward. The code itself generated by JFactory is full of avoidable comments. The

2. See “Problems While Using Applets” on page 95.

Experiences, Problems and Recommendations Summary

122

source code builder also writes more than one class in a class file. This is not per-
mitted, and makes it impossible for other classes to reuse them without extracting
those classes into separate files which would allow them to be declared as public.

123

25 Suggestions for Future
Extensions

25.1 Towards TINA Service Architecture 4.1

The actual implementation of this project is based on the TINA Service Architec-
ture 2, which is the Service Architecture that the TANGRAM platform was based
on at the end of 1996. While I’m finishing this diploma thesis in April 1997, the
TANGRAM team and the PCS in TINA team are working on a migration from the
Service Architecture 2.0 to 4.1.

As soon as the specification for the new platform is released, this management
toolset should be converted to the new Service Architecture as well.

The place to apply changes in the toolset is the API package—as long as no
changes are made to the structure of the computational objects.

25.2 Management as TINA Service

The actual management applications contain the full access functionalities to the
TANGRAM platform. This makes the applications pretty ‘fat’. It should be con-
sidered weather or not to implement a management service which is located
inside of the TINA Architecture.

25.3 Security

At the moment, the management applications are only used by a small set of
developers, all of whom are trusted members of the PCS in TINA project. When
making the management toolset available to a broader set of people, security
measures should be considered, like login procedures while starting an applica-
tion or changing a platform.

25.4 Logging

Using the Command Processor patterns does not only allow the application to
provide undo and redo operations, it also allows it to trace all user-actions which
concern the modification of computational objects. All management applications
provide the ability to turn on or off logging and debugging information; an
attribute that is of more interest to programmers than to end users.

Using the Command Processor to trace user actions could provide the follow-
ing features:

■ Saving all changes during a session into a file.
■ Allowing undo of a complete session.
■ Allowing undos of previous sessions.

Par t 5
Summary

Outlook

Conclusion

Performance Suggestions for Future Extensions

124

25.5 Performance

The performance of the applications is pretty good, considering that Java is an
interpreted language. While starting the application, the user has to wait a short,
but acceptable time until the application is loaded. This is partly a problem of the
Java Abstract Window Toolkit (AWT) which is kept very generic so that it is plat-
form independent.

The bottleneck of performance lies in the usage of different ORB implementa-
tions, which serve different needs. The management applications contact a Small-
talk ORB, which contacts, for selected purposes the C++ ORB implementation.
Lists, like a list of users or terminals, are created on the Smalltalk server side. The
Smalltalk server contacts the C++ server to retrieve information about, e.g. each
single user. To retrieve information about single users, several remote procedure
calls have to be made. This is highly expensive, not desirable and results in
extremely long waiting times for lists that contain 50 items or more.

There are two possible ways to get rid of that bottleneck:

1. The C++ server implementation provides operations to retrieve lists. This is
obviously the best solution.

2. The management toolset is optimized to avoid waiting times.

The first point is not in the range of this project and therefore only the second
one can be taken into consideration. Possible ways to optimize the implementa-
tion are:

■ Multithreading
■ Callbacks

While multithreading is a precondition for callbacks1, multithreading without
callbacks could be a first step in the right direction. The idea is to implement a
thread that is contacting the server automatically while the application is started.
When the user decides to query for a list, the thread could already have accom-
plished the biggest part of the task. The waiting time could be shortened.

Secondly, using callback mechanisms, the client could inform the server—
once a list was retrieved—that the client is interested in upcoming changes on the
server side and wants to be informed when ever a change in the data structure of
a special kind of computational objects occurs. So every time, an other user has
changed data, the client will be informed by the server and therefore only has to
query for changes in that particular object. After retrieving changed data, the cli-
ent only has to update it’s internal list.

25.6 Usage of Different Platforms

The management toolset provides facilities to change from one platform to
another without changing the implementation of the application layer. However,
this project has access to only one platform; the TANGRAM DPE. As soon as the
ORACLE Java Server is available, access to that platform should also be imple-
mented and provided.

1. [Orfali+97]

Part 5: Conclusion Integration of Authoring Components

125

25.7 Integration of Authoring Components

Simultaneously with the design and implementation phases of this project,
research was done to develop concepts for retrieving data, stored in an arbitrary
text file. Those concepts are based on the Shopper/Provider pattern and were
done under the label of authoring components. A first implementation is already
available. Due to some changes of interfaces during the implementation of this
management toolset, both implementations are not, at the moment, one hundred
percent compatible. Some changes must first be applied to the authoring compo-
nents.

The advantage of authoring components lies in their capability to allow data
accessing from any kind of database without the need for specialized database
engines. The only precondition is the availability of facilities for writing data to a
text file from inside of a database.

25.8 Applets in a Netscape Browser

Applets in a Netscape browser (Navigator version 32) are not authorized to con-
tact an other host than the one an applet is loaded from. Since the TANGRAM
platform uses different ORB implementations, neither of which is located on the
Web server host, changes have to be made on the management toolset in order
that applications can be run as applets:

1. A gateway to other hosts has to provide all operations which need contact
with other hosts. This is done by a specialized server implementation.

2. For a server implementation the critical operations have to be located.

3. The operations have to be defined in IDL.

4. Exceptions thrown by the API layer have to be rewritten since CORBA does
not allow extensions of the exception class in the way it is provided by the
management toolset.

Visigenic provides a gateway tool3 which could also be a solution to the prob-
lems described above.

25.9 Extended Usage of Factories

The factory method concept is very useful for moving the responsibility and
knowledge of creating an object out of the framework4. The management toolset
only uses factories to create service access manager. For more flexibility it is imag-
inable to implement factories for widgets as well as for other components.

2. Netscape’s browser 4.0 will be renamed to Communicator.
3. IIOP Gateway. [Visigenic96a]
4. [Gamma+94]

Extended Usage of Factories Suggestions for Future Extensions

126

Par t 6

Appendix

This last part contains additional information on various topics,
with the aim of giving a better overall understanding of this di-
ploma thesis project. It begins with some hints for installation,
followed by a programmer’s guide, which could be helpful in
adding further extensions. A style guide is included which lists
the rules for programming I followed during the implementation
phase. Then, there is a chapter which lists and explains all used
notation used in this thesis. Next, a chapter follows that explains
all the design patterns used in the project and can be seen as the
pattern catalogue of this thesis project. The design pattern chap-
ter is followed by an application cookbook which describes the
steps needed to implement a portable client.

The book closes with a bibliography, a glossary, a list of acronyms
and an index.

TINA

PCS in TINA

TANGRAM

CORBA

User Agent

TE-A

LCxt

Registration
Server

Summary

Outlook

Package
Usage

Abstract
Classes

Dynamic
Model

User Agent
Management

Terminal
Management

Location
Management

Registration
Management

Utilities

Graphical User
Interface

Applications
and Applets

Background Implementation User’s Manual Conclusion

Requirements

Toolset
Architecture

Objects to be
Managed

Packaging
Concepts

Design

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Appendix

129

26 Deployment

This chapter presents useful information on how to successfully start the manage-
ment application.

There are several parameters which must be passed to the application during
start-up. These parameters are listed and described in Table 26-1. The following
section discusses the software needed to access the Object Request Broker. Next,
a list of necessary software with their minimum required version numbers is
given.

This chapter ends with sample start script files for a UNIX system which show
possible entries for each management application.

26.1 Start Parameter for the Applications

There are several options that can be set while starting one of the management
applications. Although not all applications support option dialogs, all do support
the setting of options with start parameters. A list of available start parameters is
given in Table 26-1. For examples of how to use the start parameters, see the fol-
lowing example start script files.

26.2 Using the Object Request Broker

The provided TANGRAM Service Access Manager needs an access point to an
Object Request Broker (ORB). Access to an ORB is granted while a so called
osagent is running on your system. If no osagent is running on the host from

Table 26-1. List of Available Start Parameter

Parameter Name Possible values Description

OSAGENT_ADDR The address of your
OSAGENT for CORBA
access

sets the address which the applica-
tion needs to access servers in a dis-
tributed environment via a CORBA
ORB.

NS_IOR_URL The location of the Nam-
ing Service IOR

Needed for communication between
different ORB implementations.

GSEPIOR The location of the
Generic Session End-
point IOR

Needed for communication between
different ORB implementations.

DEBUGMODE 0 for no Output
1 for debug output on
console

See Chapter on debugging and log-
ging.

IMAGEPATH The path to the images
used in the application

If the image directory is not located
in the same directory from which
your application was started, you
need to set that path.

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Appendix
Par t 6

Packages Needed to Run the Applications Deployment

130

which you started the management application, you need to specify the host that
is running an osagent. For more information about osagents, please see Visigenics
‘Programmer’s Guide Version’ [Visigenic96a].

26.3 Packages Needed to Run the Applications

The Java Packages needed to run a management application of the management
toolset are listed in Table 26-2.

26.4 Script Files to Start the Applications

This section provides some sample script file for starting the management appli-
cations. All examples given are for a UNIX system but are easily adaptable to
other operating systems.

Table 26-2. Packages Needed to Run the Management Toolset

Package Name Version Provider

java JDK 1.0.2 JavaSoft, Sun Microsystems

com.roguewave.widgets JFactory 1.1.0 Roguewave

CORBA Visibroker 1.2.0 Visigenic

pomoco Visibroker 1.2.0 Visigenic

de.gmd.fokus.ice.pcs.mngmt 1.0 GMD Fokus and TU Berlin

Part 6: Appendix Script Files to Start the Applications

131

User Data Configuration Tool

Terminal Data Configuration Tool

#!/bin/sh
OSAGENT_ADDR is needed by the Visigenic ORB
OSAGENT=OSAGENT_ADDR=marconi.fokus.gmd.de
Where to find IOR
IOR_HOME=file:/internet/shannon/home/hw/TestImage
#
NS_IOR_URL is needed by Naming Service class NS_Adaptor
IORURL=NS_IOR_URL=${IOR_HOME}/ns.ior
GSEP_IOR_URL is needed by class GSEP_Adaptor
GSEPIOR=GSEP_IOR_URL=${IOR_HOME}/gsep.ior
DEBUGMODE: if not set or set to 0, no debugging information will be shown
DEBUG=DEBUGMODE=1
#
IMAGES=IMAGEPATH=/internet/shannon/home/gut/PCSinTINA/Management/images
Where to find the Java interpreter:
JAVAHOME=/net/ice/java/java-jdk-1.0.2
CORBA ORB for Java
BROKER_HOME=/net/ice/java/unsupported/visibroker-java-1.2.0
BROKER_CLASSES=${BROKER_HOME}/classes
PACKAGES=/net/u/ovma/gut/mngmt/PCSinTINA.zip
JAVACLASSES=${JAVAHOME}/lib/classes.zip

echo Running User Configuration Tool
echo Using ORB ${BROKER_HOME}
${JAVAHOME}/bin/java \
 -D${OSAGENT} \
 -D${IORURL} \
 -D${GSEPIOR} \
 -D${DEBUG} \
 -D${IMAGES} \
 -classpath .:${JAVACLASSES}:${BROKER_CLASSES}:${PACKAGES} \
 de.gmd.fokus.ice.pcs.mngmt.uap.appUA.UserConfigurationTool &

Figure 26-1. Script File to Start the User Data Configuration Tool

#!/bin/sh
OSAGENT_ADDR is needed by Blackwidow ORB
OSAGENT=OSAGENT_ADDR=marconi.fokus.gmd.de
Where to find IOR
IOR_HOME=file:/internet/shannon/home/hw/TestImage
NS_IOR_URL is needed by Naming Service class NS_Adaptor
IORURL=NS_IOR_URL=${IOR_HOME}/ns.ior
GSEP_IOR_URL is needed by class GSEP_Adaptor
GSEPIOR=GSEP_IOR_URL=${IOR_HOME}/gsep.ior
DEBUGMODE if not set or set to 0, no debugging information will be shown
#DEBUG=DEBUGMODE=0
#
IMAGES=IMAGEPATH=/internet/shannon/home/gut/PCSinTINA/Management/
images
JAVAHOME=/net/ice/java/java-jdk-1.0.2
CORBA ORB for Java
BROKER_HOME=/net/ice/java/unsupported/visibroker-java-1.2.0
ORB_CLASSES=${BROKER_HOME}/classes
#
PACKAGES=/net/u/ovma/gut/mngmt/PCSinTINA.zip
JAVACLASSES=${JAVAHOME}/lib/classes.zip

echo Running User Configuration Tool
echo Using ORB ${BROKER_HOME}
${JAVAHOME}/bin/java \
 -D${OSAGENT} \
 -D${IORURL} \
 -D${GSEPIOR} \
 -D${DEBUG} \
 -D${IMAGES} \
 -classpath .:${JAVACLASSES}:${ORB_CLASSES}:${PACKAGES} \
 de.gmd.fokus.ice.pcs.mngmt.uap.appTEA.TEA &

Figure 26-2. Script File to Start the Terminal Data Configuration Tool

Script Files to Start the Applications Deployment

132

Location Data Configuration Tool

Registration Management Tool

#!/bin/sh
OSAGENT_ADDR is needed by Blackwidow ORB
OSAGENT=OSAGENT_ADDR=bell.fokus.gmd.de
#
Where to find IOR
IOR_HOME=file:/internet/shannon/home/hw/TestImage
#
NS_IOR_URL is needed by Naming Service class NS_Adaptor
NSIORURL=NS_IOR_URL=${IOR_HOME}/ns.ior
GSEP_IOR_URL is needed by class GSEP_Adaptor
GSEPIOR=GSEP_IOR_URL=${IOR_HOME}/gsep.ior
DEBUGMODE if not set or set to 0, no debugging information will be shown
#DEBUG=DEBUGMODE=0
IMAGES=IMAGEPATH=/internet/shannon/home/gut/PCSinTINA/Management/images
JAVAHOME=/net/ice/java/java-jdk-1.0.2
CORBA ORB for Java
BROKER_HOME=/net/ice/java/unsupported/visibroker-java-1.2.0
ORB_CLASSES=${BROKER_HOME}/classes
#
PACKAGES=/net/u/ovma/gut/mngmt/PCSinTINA.zip
JAVACLASSES=${JAVAHOME}/lib/classes.zip

echo Running Local Context Configuration Tool
echo Using ORB ${BROKER_HOME}
${JAVAHOME}/bin/java \
 -D${OSAGENT} \
 -D${NSIORURL} \
 -D${GSEPIOR} \
 -D${DEBUG} \
 -D${IMAGES} \
 -classpath .:${JAVACLASSES}:${ORB_CLASSES}:${PACKAGES} \
 de.gmd.fokus.ice.pcs.mngmt.uap.appLCxt.LCxtUap &

Figure 26-3. Script File to Start the User Data Configuration Tool

#!/bin/sh
OSAGENT_ADDR is needed by Blackwidow ORB
OSAGENT=OSAGENT_ADDR=marconi.fokus.gmd.de
Where to find IOR
IOR_HOME=file:/internet/shannon/home/hw/TestImage
NS_IOR_URL is needed by Naming Service class NS_Adaptor
IORURL=NS_IOR_URL=${IOR_HOME}/ns.ior
GSEP_IOR_URL is needed by class GSEP_Adaptor
GSEPIOR=GSEP_IOR_URL=${IOR_HOME}/gsep.ior
DEBUGMODE if not set or set to 0, no debugging information will be shown
#DEBUG=DEBUGMODE=0
#
IMAGES=IMAGEPATH=/internet/shannon/home/gut/PCSinTINA/Management/images
JAVAHOME=/net/ice/java/java-jdk-1.0.2
CORBA ORB for Java
BROKER_HOME=/net/ice/java/unsupported/visibroker-java-1.2.0
ORB_CLASSES=${BROKER_HOME}/classes
PACKAGES=/net/u/ovma/gut/mngmt/PCSinTINA.zip
JAVACLASSES=${JAVAHOME}/lib/classes.zip

echo Running User Configuration Tool
echo Using ORB ${BROKER_HOME}
${JAVAHOME}/bin/java \
 -D${OSAGENT} \
 -D${IORURL} \
 -D${GSEPIOR} \
 -D${DEBUG} \
 -D${IMAGES} \
 -classpath .:${JAVACLASSES}:${ORB_CLASSES}:${PACKAGES} \
 de.gmd.fokus.ice.pcs.mngmt.uap.appRS.RegServer &

Figure 26-4. Script File to Start the Registration Management Tool

133

27 Programmers Guide

With the goal of aiding programmers who want to use or even to extend this tool-
set, this chapter describes the environment in which the management toolset was
developed.

27.1 The Programming Environment

This section describes the programming environment that I installed and used to
implement the management toolset.

Java Development Kit

For development, the Java Development Kit, version 1.0.2 as released in May
1996 was used to compile the sources.

Widgets

In addition to the Java Development Kit, I used the RogueWave graphical user
interface builder JFactory 1.1.0 and the with this tool provided packages.

CORBA Broker Packages

To run the binaries, Visigenics Visibroker for Java, version 1.2.0 was used addi-
tionally.

27.2 Generating Java Binary Code

Make Files

For each package, I wrote a makefile which provides tags for each class file in the
directory in which it is located. To be included in each makefile, a central make-
file.inc is also provided. The path for this latter file can be found in each ‘normal’
makefile.

27.3 Running and Testing the Binaries

Test Script Files

Each main program is located in a separate directory and follows the naming con-
ventions as described. In every directory where there is a main program, a ‘run’
file can also be found. To execute the software, just type run. Environment etc.
will be set inside of that runfile which means it will be necessary eventually to edit
the runfiles to fit to your special environment.

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Appendix
Par t 6

Source Code Documentation Programmers Guide

134

27.4 Source Code Documentation

Sources are documented in two ways. I followed the’ javadoc’ guidelines1 and
added javadoc comments as much as was possible. I generated HTML documents
which can be displayed using a WWW browser. The actual WWW address can be
found in the README file in the package root directory.

1. [Aitken96], [Friendly95or96]

Figure 27-1. Source Code Documentation Available with a WWW Browser

135

28 Style Guide

This chapter lists the programming conventions for the implementation part of
this project. Naming conventions are declared as well as programming guidelines
for writing methods and naming them.

28.1 Structure and Documentation

Packages

For each self-contained project or group of related functionalities, a new java
package was created. Each package is hosted in its own directory according to the
java package guide lines.

Class Files

Each class is placed in a separate file.

Comments

Java allows C-like comments. A special formatting of comments allows the Java
tool javadoc to create online-documentation in HTML from the source files. Each
class and each method should be commented with a javadoc comment.

28.2 Naming Conventions

Packages

All packages designed for the scope of this project are written in lower case letters
(de.gmd.fokus.ice.pcs.mngmt.ua).

Classes

Class names start with a capital letter, followed by mixed letters (UserManager-
Factory)

Exceptions

Exception class names end with Exception (ThisShouldNeverOccurException)

Methods

Methods start with a lower case letter, followed by mixed letters (getAllUser-
Names)

Fields

Fields start with a lower case letter, followed by mixed letters (private String
ownerInformation;)

Constants

Constants are written in uppercase letters (MAX_WIN_WIDTH).

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Appendix
Par t 6

Access to Class Fields Style Guide

136

28.3 Access to Class Fields

All class fields should be declared as private. Private fields are not visible from
the outside. Access to fields are granted with access methods; where necessary.

Setting the Value of a Class Field

Methods to set a field start with the prefix set.

Example: Field: private String ownerInformation;

public void setOwnerInformation(String ownerInfo) …

Reading the Value of Class Fields

Methods for reading a field value start with prefix get.

Example: Field: private String ownerInformation;

public String getOwnerInformation () …

28.4 Recommendations

The following recommendations are taken out of a paper from Doug Lea [Lea97].
This paper, available via WWW, concerning the optimization of Java sources, pre-
sents some valuable starting points for Java programmers.

import

Minimize global import of a package by using the asterisk (*). Be precise about
imported classes. Check that all declared imports are actually used. Otherwise
readers of the code will have a hard time understanding its context and depen-
dencies.

null references

Assign n u l l to any reference variable that is no longer being used. This includes,
especially, elements of arrays. This enables garbage collection.

Instance Variable

Never declare instance variables as public.

137

29 Notations

This chapter introduces the notations used in this book.

29.1 Computational Objects

The notation of computational objects is used in the TINA-C documents.

29.2 Engineering Objects

The notation of engineering objects is also used in the TINA-C documents.

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Appendix
Par t 6

COC

COA COB

Client
Interface

Server

COD

Producer
Sink

Consumer
Source

Stream interface notation

Operational interface notation

Figure 29-1. Computational Object Graphical Description

Figure 29-2. Engineering Computational Object Graphical Description

Interaction Diagrams Notations

138

29.3 Interaction Diagrams

29.4 Packages

The package notation is from the Unified Modeling Language.

ShopperConsumer Provider(s)

setList

obtainItems

obtainItem

obtainItem

getBag

…

Figure 29-3. Interaction Diagram Notation

Vertical blocks denote the lifetime of an object. This notation is derived from the
Object Sequence Message Charts that can be found in [Buschmann+96].

PackageName PackageName

Package
A1

Package
A2

Figure 29-4. Package Notation

The left notation stands for a package, the right one is a package with nested
packages. Relations between packages can be expressed using dashed arrows.
More information can be found in [Rational97a].

Part 6: Appendix OMT Notation

139

29.5 OMT Notation

The OMT notation provides a rich variety of symbols to express relations between
objects. Here I will list only those notations used in my work.

Class

Generalization (Inheritance)

Abstract Operation

Class Name

Class Name

attribute

operation
operation (arg_list): return_type

Superclass

Subclass-1 Subclass-2

Superclass

Subclass-1 Subclass-2

operation {abstract}

operation operation

Operation is abstract in
the superclass.

Subclass must provide
concrete implementa-
tions of operation

OMT Notation Notations

140

Association

Multiplicity of Associations

Association as Class

Aggregation

Class-1 Class-2
role-1 role-2

Association Name

Class Class

Class Class

Class

Exactly one Many (zero or more)

Optional (zero or one) One or more

Numerically specified
1-2, 4

1+

Class-1 Class-2

Association Name

link attribute
…

link operation
…

One part -> one whole

One part -> many whole

Many parts -> one whole

Many parts -> one whole

141

30 Catalog of Applied Design
Patterns

Software design patterns are an emerging tool for guiding and documenting sys-
tem design1. Design patterns provide a solution for a given problem in a specific
context. They are a valuable aid for documenting and communicating software
design experience. The sum of all patterns applied to a given domain, build a spe-
cific pattern language.

To a great extent, design patterns are used during the design and implemen-
tation phase of this management toolset. Knowledge of and familiarity with
design patterns are of crucial importance for the better understanding of this
project. This introduction is nevertheless just that. The reader who would like to
go into more depth then the glance at each pattern that this introduction offers, is
referred to the literature listed in the appendix at the end of this book.

30.1 What are Design Patterns for?

In his article ‘What is a method’2 James Rumbaugh says about patterns:

Over time many people have observed that there are good solutions
to certain problems that come up repeatedly in good designs. Over
the years in any creative craft, the practitioners learn good ways to
solve certain kinds of problems, and the good solutions tend to be
reused. Rather than create a brand new design from first principles
each time, expert designers save a lot of work by incorporating these
‘canned solutions’ into their own designs. Home builders have con-
ventional solutions to building windows, running plumbing, or lay-
ing out kitchens. These standard solutions may not be optimal in
every respect, but they are good, serviceable designs that have been
validated by years of experience. These ‘solutions waiting for prob-
lems’ are called patterns. Architects, tailors, cabinetmakers, and
other craftsmen have traditionally kept pattern books that showed
good solutions to many design problems. Novice craftsmen could
learn from the experts by examining their patterns.

James O. Coplien describes pattern in the following way:

The term pattern, as adopted by contemporary software designers
exploring its benefits, is both part of a system and a description of
how to build that part of the system. Patterns usually describe soft-
ware abstractions used by designers and programmers in their soft-
ware. As abstractions, patterns commonly cut across other common
software abstractions like procedures and objects, or combine more
common abstractions in powerful ways. […] The term pattern
applies both to the thing (for example, a collection class and its asso-
ciated iterator) and the directions for making a thing. In this sense,

1. [Coplien94] Software Design Patterns: Common Questions and Answers
2. [Rumbaugh95] pp 14

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Appendix
Par t 6

How to Read this Chapter Catalog of Applied Design Patterns

142

software patterns can be likened to a dress pattern: the general shape
is in the pattern itself, though each pattern must be tailored to it’s
context.3

Christopher Alexander, the ‘father’ of the pattern movement and an professor
of architecture says in his book ‘A Pattern Language’4:

In short, no pattern is an isolated entity. Each pattern can exist in the
world, only to the extent that is supported by other patterns: the
larger patterns in which it is embedded, the patterns of the same size
that surround it, and the smaller patterns which are embedded in it.

This is a fundamental view of the world. It says that when you
build a thing you cannot merely build that thing in isolation, but
must also repair the world around it, so that the larger world at that
one place becomes more coherent, and more whole; and the thing
which you make takes its place in the web of nature, as you make it.

[…] Each solution is stated in such a way that it gives the essen-
tial field of relationships needed to solve the problem, but in a very
general and abstract way—so that you can solve the problem for
yourself, in your own way, by adapting it to your preferences, and
the local conditions at the place where you are making it5.

The Design Patterns movement in computer science is still young. It got its big
‘kick’ with the book that has already become a classic, ‘Design Patterns, Elements
of Reusable Object-Oriented software’6. This book is also called a catalog of pat-
terns. The fact is, none of the patterns in the book were invented by the authors.
The innovation lies mainly in the fact, that never before has a handbook for pro-
grammers and system designers existed, that lists a catalog of problems and their
solutions given in various contexts.

Since then, several books about patterns have been published and the move-
ment continues to excite a growing interest in the field of computer science. The
Impact of design patterns speaks for itself, in that the design of the ‘Internet pro-
gramming language’ Java, was heavily influenced by design patterns, as well as
was the design of the Common Object Request Broker Architecture (CORBA).

30.2 How to Read this Chapter

The patterns used in this work are mostly taken out of two books: ‘Design Pat-
terns, Elements of Reusable Object-Oriented Software’7 and ‘A System of Pat-
terns, Pattern-Oriented Software Architecture’8.

The description of each pattern given here is very brief and should be seen as
an introduction for a reader not familiar with the design pattern movement.

The introduction to each design pattern follows, of course, a specific pattern.
It starts with a short description of the intent of each pattern, mostly quoted from
the book which the pattern was taken from. The intent section is followed by a
description of problems and their solutions that the patterns provide. The compo-

3. [Coplien94]
4. [Alexander+77]
5. [Alexander+77], p. xiii
6. [Gamma+94]
7. [Gamma+94]
8. [Buschmann+96]

Part 6: Appendix Layers

143

sition of the pattern is sketched in the structure section which is followed by a
benefits and a liabilities section. This section describes the possible consequences
of using each pattern. Each pattern description ends with a section describing the
applicability of the pattern relative to this project.

30.3 Layers

The Layers pattern is a widely known and used concept in design software. It is
used for example, in the OSI 7-Layer Model, the Java Virtual Machine and in
Application Programming Interfaces. The following introduction is an adoption
from the book ‘A System Of Patterns’9.

Intent

The Layers architectural pattern helps to structure applications that can be decom-
posed into groups of subtasks in which each group of subtasks is at a particular
level of abstraction9.

Problem

Imagine a system with a mix of low- and high-level issues, where high-level oper-
ations rely on the lower ones. The system requires, that late source code changes
should not ripple through the system, that interfaces should be stable, and that
parts of the system should be exchangeable. Furthermore, similar responsibilities
should be grouped to improve comprehension and maintenance.

Solution

Structure your system into an appropriate number of layers and place them on
top of each other.

Structure

The main structural characteristic of the Layers pattern is that the service of one
layer is only used by the layer above. There is no other dependency between lay-
ers. Buschmann et al. compares this with a stack or an onion where each individ-
ual layer shields all lower layers from direct access by higher layers.

9. [Buschmann+96] pp 31

Client Layer N

Layer N-1

Layer 1

highest level of abstraction

lowest level of abstraction

uses

[Buschmann+96]

Observer Catalog of Applied Design Patterns

144

Benefits

Several benefits of the Layers pattern are named by the authors:

■ Reuse of layers: If an individual layer embodies a well-defined abstraction
and has a well-defined and documented interface, the layer can be reused in
multiple contexts.

■ Support for standardization: Clearly-defined and commonly-accepted levels
of abstraction enable the development of standardized tasks and interfaces.
Different implementations of the same interface can then be used inter-
changeably.

■ Dependencies are kept local: Standardized interfaces between layers usually
confine the effect of code changes to the layer that is changed.

■ Exchangeability: Individual layer implementation can be replaced by seman-
tically-equivalent implementations without too great an effort.

Liabilities

Liabilities are also listed in the description of the Layers pattern.

■ Lower efficiency: A layered architecture is usually less efficient than, say, a
monolithic structure or a ‘sea of objects’.

■ Unnecessary work: If some services performed by lower layers perform
excessive or duplicate work not actually required by the higher layer, this has
a negative impact on performance.

■ Difficulty of establishing the correct granularity of layers: A layered architec-
ture with too few layers does not fully exploit this pattern’s potential for reus-
ability, changeability and portability. On the other hand, too many layers
introduce unnecessary complexity and overheads in the separation of layers
and the transformation of arguments and return values.

Applicability

The architectural pattern Layer is used as an overall architecture for this project.
Each toolset is divided into three layers:

■ The top layer, the Application Layer is responsible for handling and displaying
the data of the managed objects.

■ The middle layer, the Service Access Management Layer, allows a platform inde-
pendent access to services and decouples the application layer from the bot-
tom most layer.

■ The bottom layer, the Application Programming Interface Layer, regulates the
access to a specific platform.

30.4 Observer

A comprehensive description of the Observer behavioral pattern can be found in
the ‘Design Patterns’ catalogue10. The following introduction is mainly based on
that description. The Observer pattern is also known as Publisher-Subscriber pat-
tern and can also be found as part of the Model-View-Controller pattern11.

10. [Gamma+94], Observer(293)
11. see page 146

Part 6: Appendix Observer

145

Intent

The Observer Pattern defines a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated
automatically10.

Problem

A common side-effect of partitioning a system into a collection of cooperating
classes is the need to maintain consistency between related objects. To achieve
consistency by making the classes tightly coupled is not always wanted, because
this reduces their reusability.10

Imagine an application with different dialogs showing different aspects of the
same context. Each view of that context should be informed automatically after a
change has occurred.

Solution

Design a system where an object which holds data that will be used by several, is
called the subject, and the objects interested in the data are called observers. The
subject holds a list of all observers and informs them after a change has occurred.
Each observer decides if and how it will react to that notification.

Structure

The participants of this pattern are the subject and its observer. A subject can have
an unlimited number of observers. An observer attaches (subscribes) to the sub-
ject. The subject notifies, after a change of its core data, all observers calling their
update method. The observers are free to determine if they want to query the sub-
ject for changed data.

The informational model consists of two abstract classes: the Subject and the
Observer (cf. Figure 30-1). The Observer defines an updating interface for Objects
that should be notified of changes in a Subject. The Subject provides an interface
for attaching and detaching Observer objects. The ConcreteSubject implements
methods to query and set the core data which are used by the ConcreteObserver to
retrieve the desired information or change the state of the ConcreteSubject.

subject

Subject

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

GetState()
SetState()

Observer

Update()

ConcreteObserver

observerState

Update()

observers

Figure 30-1. Structure of the Design Pattern ‘Observer’

[Gamma+94]

Model-View-Controller Catalog of Applied Design Patterns

146

Benefits

■ Subjects and observers can vary independently.
■ Subjects can be reused without reusing their observers, and vice versa.
■ Observers can be added without modifying the subject or other observers.
■ Subject and object are coupled in an abstract way. All a subject knows is that it

has a list of observers, each conforming to the simple interface of the abstract
Observer class. The subject is unaware of any feature of the observers except
the update method.

■ Support for broadcast communication is provided.

Liabilities

■ Unexpected updates. Because the subject does not know which of the observ-
ers is interested in what information change, it informs all observers after
each change. This can cause unwanted updates.

Applicability

The Observer pattern is used in the Model-View-Controller pattern (see below).

30.5 Model-View-Controller

The Model-View-Controller pattern (MVC) serves as a pattern to design interactive
applications with a flexible human-computer interface.

The MVC pattern is also known as Publisher-Subscriber or Observer-and-
Observable. This pattern is actually an extension of the Observer pattern, which is
described above.

The programming language Java provides a class Observable and an interface
Observer to support the implementation of the MVC pattern.

The introduction to this pattern is based on the ‘A system of Patterns’ cata-
log.12

Intent

‘The Model-View-Controller architectural pattern (MVC) divides an interactive
application into three components. The model contains the core functionality and
data. Views display information to the user. Controllers handle user input. Views
and controllers together comprise the user interface. A change-propagation
mechanism ensures consistency between the user interface and the model.'12

12. [Buschmann+96]; Model-View-Controller(125)

Part 6: Appendix Model-View-Controller

147

Problem

Imagine an application where different users place conflicting requirements on
the user interface. A typist enters information into forms via the keyboard. A
manager wants to use the same system mainly by clicking icons and buttons.
Consequently, support for several user interface paradigms should be easily
incorporated.

Solution

Use the Observer pattern and add a control instance to handle user input.

Structure

The Model-View-Controller design pattern consists of three components.

The model component contains the functional core of the application. It encap-
sulates the appropriate data, and exports procedures that perform application-
specific procession. Controllers call these procedures on behalf of the user. The
model also provides functions to access its data that are used by view compo-
nents to acquire the data to be displayed.

The view component is responsible for the representation of the model’s data.
A view might only display the focus on a very specific part of the models core.
Different views might display the same focus in completely different ways. A
view registers with the model which informs all registered views through a com-
mon interface about changes in the core. This is called the change-propagation
mechanism. The propagation is normally done through invoking the update
method of the observer. The observer decides after being notified, which methods
of the model have to be invoked to retrieve the changed data needed in that spe-
cific view.

The controller components accept user input as events. The controller compo-
nents then analyze this input, and decide who—model or view—to inform about
the specific user demand. A controller can also be registered as an observer with
the model and can therefore participate in the change-propagation mechanism.

Skiing-

Figure 30-2. Multiple Views of the Same Model

Model

Model-View-Controller Catalog of Applied Design Patterns

148

Benefits

■ Multiplicity: Multiple views of the same model.
■ Synchronized views: Through the change-propagation mechanism, views are

notified upon changes inside the model at the correct time. The model
decides when to inform the observers.

■ ‘Pluggable’ views and controllers: A strict separation of the model from the
user-interface components allows an easy exchange of views without affect-
ing the model. User interface objects can even be substituted at run-time.

■ Exchangeability of ‘look and feel’: For the same reason, different views for
different platforms can be implemented without affecting the implementa-
tion of the model.

Liabilities

■ Increased complexity: It is possible to have more than one controller for a
view. More components to maintain often leads to a more complex imple-
mentation which may be harder to understand.

■ Potential for an excessive number of updates: Each time a change occurs in
the model, all registered observers are notified even if most of them are not
interested in that specific change. To avoid this, a message should be sent
with each change-propagation to inform observers about the kind of change.
Then it is up to the observer to decide whether to contact the model or not.

Observer

update

Subject

attach(Observer)
detach(Observer)
notify

call update

View

myModel
myController

initialize(Model)
makeController
activate
display
update

Model

coreData
setOfObservers

attach(Observer)
detach(Observer)
notify
getData
service

Controller

myModel
myView

initialize(Model, View)
handleEvent
update

attach, getData

attach, call service

create, manipulate, display

Figure 30-3. Structure of the Design Pattern ‘Model-View-Controller’

[Buschmann+96]

Part 6: Appendix Command

149

■ Intimate connection between view and controller: Controller and view are
separate but closely related components. This hinders their individual re-use.

■ Inefficiency of data access in the view component: Depending on the inter-
face of the model, a view may need to make multiple calls to obtain all its dis-
play data. Unnecessarily requesting unchanged data from the model
weakens performance if updates are frequent. Caching of data within the
view improves responsiveness.

Applicability

All management toolsets in this project are designed using the Model-View-Con-
troller pattern. Each graphical user interface is composed of different views which
can be exchanged and plugged into other applications. However, I have used the
Controller pattern in a slightly different way than described in this section. For
more details see section “Layer for Application” on page 46.

30.6 Command

The object behavioral pattern Command is described in detail in the ‘Design Pat-
terns’ catalog13. The Command pattern is also known as Action and Transaction and
is used and extended in the pattern Command Processor14. The pattern eases
implementation of the undo and redo functionalities in an application.

Intent

The Command pattern encapsulates a request as an object, thereby permitting cli-
ents with different requests to parameterize, queue or log requests, and support
undoable operations.

Problem

Sometimes it is necessary to issue requests to objects without knowing anything
about the operation being requested or the receiver of the request. Graphical user
interfaces often provide different possibilities for executing a command. Take, for
example, buttons and menu entries. It is not desirable to implement the request
explicitly in the button or the menu entry.

Solution

,The Command pattern lets toolkit objects make requests of unspecified applica-
tion objects by turning the request itself into an object. This object can be stored
and passed around like other objects’15.

Structure

The Command pattern consists of five participants (cf. Figure 30-4). The com-
mand declares an interface for executing an operation. A ConcreteCommand
defines the binding between a receiver object and an action. It implements the
‘Execute’ by invoking the corresponding operations on the receiver. A client cre-
ates a ConcreteCommand object and sets its receiver. The Invoker, a button for

13. [Gamma+94]; Command(233)
14. see page 150
15. [Gamma+94]

Command Processor Catalog of Applied Design Patterns

150

example, asks the command to carry out the request. The receiver, e.g. the Model
of the Model-View-Controller pattern, knows how to perform the operations
associated with carrying out a request.

Benefits

The benefits, listed in the ‘Design Patterns’ catalog are as follows:

■ The operation is decoupled from the object that invokes it.
■ Command objects are easy to manipulate and to extend.
■ Commands can be assembled into a composite command, e.g. a macro com-

mand which is a sequence of command objects.
■ New commands are easy to add, because existing ones do not have to be

changed.
■ Undo and redo operations are easy to implement.

Liabilities

For liabilities see the discussion in the Command Processor pattern below.

Applicability

The Command pattern is used to support the operations create, modify and delete
and to support the undo and redo functionalities.

30.7 Command Processor

The Command Processor pattern extends the Command pattern. It specially
focuses on how to implement undo and redo functionalities. A profound descrip-
tion of the Command Processor pattern can be found in the ‘A System of Pat-
terns’16 catalog on which this introduction is based on.

16. [Buschmann+96]; Command Processor(277)

receiver

Command

Execute()

Invoker

Receiver

Action()

Client

ConcreteCommand

state

Execute()

Figure 30-4. Structure of the Design Pattern ‘Command’

[Gamma+94]

Part 6: Appendix Command Processor

151

Intent

The Command Processor design pattern separates the request for a service from
its execution. A command processor component manages requests as separate
objects, schedules their execution, and provides additional services such as the
storing of request objects for later undo.

Problem

How to implement a flexible and extensible service related functionality in an
application and support undo and redo functionality.

Solution

Buschmann et al describe the solution in their book as follows:

The Command Processor pattern builds on the Command design
pattern in [Gamma+94]. Both patterns follow the idea of encapsulat-
ing request into objects. Whenever a user calls a specific function of
the application, the request is turned into a command object.

Structure

The design pattern is structured into four parts.

■ An abstract command defines the interfaces of all commands, e.g. execute, do
and redo.

■ A controller represents the interface of the application. It accepts requests
such as create or delete and creates the corresponding command objects.

■ A command processor manages command objects, schedules them, and starts
their execution.

■ The supplier component provides most of the functionality required to exe-
cute concrete commands.

Controller

event_loop

CommandProcessor

command_stack

do_it(cmd)
undo_it

AbstractCommand

do
undo

Command

state_for-undo

do
undo

supplier

app_functions
get_state
restore_state

performs

stores

transfer command

creates

uses

Figure 30-5. Structure of the Design Pattern ‘Command Processor’

[Buschmann+96]

Factory Method Catalog of Applied Design Patterns

152

Benefits

■ Flexibility in the way in which requests are activated: Different user interface
elements for requesting a function can generate the same kind of command
object, e.g. a menu item and a button execute the same functionality.

■ Flexibility in the number and functionality of requests: Changing the imple-
mentation of a command or introducing new command classes does not
affect the command processor or other unrelated parts of the application.

■ Programming execution-related services: An advanced command processor
can log or store commands in a file for later examination or replay.

Liabilities

■ Efficiency loss. Decoupling of components costs storage and time. A control-
ler that performs a service request directly does not impose an efficiency pen-
alty.

■ Potential for an excessive number of command classes. An application with
rich functionality may lead to many command classes.

■ Complexity in acquiring command parameters. Some command objects
retrieve additional parameters from the user prior to, or during their execu-
tion. This situation complicates the event-handling mechanism, which needs
to deliver events to different destinations such as the controller and some
activated command objects.

Applicability

I used the Command Processor pattern in creating the management toolset for
the purpose of providing undo and redo commands and the Model-View-Con-
troller implementation to fulfill the role of the supplier.

30.8 Factory Method

The creational pattern Factory Method is described in the ‘Design Patterns’ cata-
log17. The following description is mainly based on that catalog entry.

Intent

The Factory Method defines an interface of a complex object, but lets subclasses
decide which class to instantiate. The Factory Method lets a class defer instantia-
tion to subclasses.

Problem

How to enable the user to choose, during runtime, from different classes which
class he wishes to instantiate.

Solution

The Factory Method pattern eliminates the need to bind application-specific
classes into the code. The code only deals with a standardized interface normally
defined within an abstract class— therefore it is independent.

17. [Gamma+94]; Factory Method(107)

Part 6: Appendix Factory Method

153

Structure

The creational design pattern Factory Method is comprised of four participants
(cf. Figure 30-6).

■ The Product class defines the interface of objects which the factory method
creates.

■ The ConcreteProduct class implements the Product interface.
■ The Creator class declares the factory method, which returns an object of the

type, Product. The Creator class can also define a default implementation of
the factory method that returns a default ConcreteProduct object. The Creator
may call the factory method to create a Product object.

■ The ConcreteCreator overrides the factory method to return an instance of a
ConcreteProduct.

Benefits

The catalog lists the following benefits:

■ Products can be added and removed during runtime.
■ New objects can be specified by varying values and not by defining new

classes. New kinds of objects are effectively defined by instantiating existing
classes.

■ New objects can be specified by varying the structure.
■ Subclassing can be reduced.
■ Applications can be configured with classes dynamically.

Liabilities

■ The flexibility is limited: A Factory Method hard-codes the Product class in the
Creator class. The hard coding is only transferred from the application class to
an ‘external’ class and therefore still exists.

Applicability

I have used the Factory Method pattern to instantiate platform managers. Thus, the
user can decide during runtime, on which platform he wants to mange objects.
He may, in fact, change platforms at any time as long as they are supported by
corresponding layers.

Product Creator

FactoryMethod()
AnOperation

ConcreteCreator

FactoryMethod()

ConcreteProduct

Figure 30-6. Structure of the Design Pattern ‘Factory Method’

creates

[Gamma+94]

Singleton Catalog of Applied Design Patterns

154

30.9 Singleton

The Singleton object creational pattern is part of the ‘Design Pattern’ catalog18.
The singleton pattern describes how to ensure that a class has only one instance
during the lifetime of an application.

Intent

The Singleton pattern ensures that a class only has one instance at runtime, and it
provides a global point of access to that instance.

Problem

How to keep a specific class from having more than one instance at runtime.

Solution

The Singleton pattern hides its constructors and provides a static method, which
controls instantiation of the class and returns a reference to the instance.

Structure

The Singleton pattern defines an instance operation that lets clients access its
unique instance. The instance method of the Singleton is protected and not acces-
sible from outside the class. The Singleton has a protected field that holds the ref-
erence to the invoked instance. It provides a static method that creates one and
only one instance of the singleton at runtime and returns a reference to this field.

Benefits

The catalogue lists several benefits:

■ Controlled access to sole instances can be achieved.
■ Name space can be reduced.
■ The Singleton pattern permits refinement of operations and representation.
■ The Singleton pattern permits a variable number of instances.
■ The Singleton pattern is more flexible than class operations.

Liabilities

The catalogue lists no liabilities. Nevertheless, there is some discussion in the pat-
tern literature about the problems of how to delete a Singleton 19.

18. [Gamma+94] Singleton(127).
19. [Vlissides96-W3]

Singleton

static uniqueInstance
singletonData

static Instance()
SingletonOperation()
GetSingletonData()

return uniqueInstance

[Gamma+94]

Figure 30-7. Structure of the Design Pattern ‘Singleton’

Part 6: Appendix Facade

155

Applicability

I used the Singleton pattern to assure that only one instance of a model exists.

30.10 Facade

The Facade object structural pattern is listed in the ‘Design Pattern’ catalog20. This
pattern helps to structure a system into subsystems with the goal of reducing
complexity. The Facade object pattern provides a single, simplified interface to the
more general facilities of a subsystem.

Intent

The Facade pattern provides a unified interface to a set of interfaces in a sub-
system. The Facade pattern defines a higher-level interface that makes the sub-
system easier to use.

Problem

The structural pattern Facade addresses the problems of how to make a subsystem
easier to use and how to shield clients from the internal structure of the system.

Solution

Design subsystem interfaces for external clients.

Structure

The Facade pattern consists of the Facade object, which knows its subsystem
classes and also knows which one of them is responsible for a request (cf. Figure
30-8). The Facade object delegates client requests to appropriate subsystem
objects.

The Subsystem class implements the subsystem functionality and handles
work assigned by the Facade object. The subsystem has no knowledge of the
Facade object.

Benefits

The ‘Design Pattern’ catalogue lists the following benefits:

■ A Facade pattern shields clients from subsystem components. This reduces
the number of objects that clients deal with and makes the subsystem easier
to use.

■ The Facade pattern promotes a weak coupling between the subsystem and its
clients.

■ The Facade pattern doesn’t prevent applications from using subsystem classes
if they need to. Thus a one can choose between ease of use and generality.

Liabilities

No liabilities are listed in the catalogue.

20. [Gamma+94], Facade(185)

Mediator Catalog of Applied Design Patterns

156

Applicability

I have used the Facade pattern in the design of the Service Access Manager Layer.
I have also used it in designing the model. The model consists of a set of classes
and provides an interface for operation on the represented business model which,
in turn, is represented by the model.

30.11 Mediator

The behavioral pattern Mediator helps to manage objects from a central point.
These objects need only to know about the existence of the mediator and not of
any other object which could be influenced by an object’s change. The Mediator
pattern is listed in the ‘Design Patterns’ catalog21.

Intent

The Mediator pattern defines an object that encapsulates how a set of objects inter-
act. It also promotes loose coupling by keeping objects from referring to each
other explicitly, and it lets you vary their interaction independently.

Problem

The Mediator pattern addresses the design problem of how to design complex
object collaboration while avoiding a strong coupling between those objects. For
example, pressing a menu entry could result in the disabling of several other
menu entries. The menu entry itself should not be aware of all possible changes
to be expected and it should not be in the responsibility of the menu entry to
change the state of the other entries.

Solution

Use one object to manage the behavior of a set of objects.

21. [Gamma+94]; Mediator(273)

Facade

subsystem
classes

client
classes

[Gamma+94]

Figure 30-8. Structure of the Design Pattern ‘Facade’

Part 6: Appendix Mediator

157

Structure

The Mediator pattern consists of three participants. The Mediator itself acts as a
dialog director and defines an interface for communication with colleague
objects.

■ The ConcreteMediator implements cooperative behavior by coordinating col-
league objects.

■ The ConcreteMediator knows and maintains its colleagues.
■ The Colleague class, e.g. menu entries, buttons etc., know their Mediator object.

Each of them communicates with the mediator whenever they would have
otherwise communicated with another colleague.

Benefits

The catalog lists several benefits:

■ The Mediator pattern limits subclassing by localizing behavior that otherwise
would be distributed among several objects. Changing the behavior requires
subclassing the Mediator only; Colleague classes can be reused as they are.

■ The Mediator pattern allows loose coupling between colleagues.
■ The Mediator pattern simplifies object protocols by replacing many-to-many

interactions with one-to-many interactions.
■ The encapsulation of an interaction between objects into on object can help

clarify how objects interact in a system.

Liabilities

■ The Mediator pattern centralizes control. When protocols are encapsulated
into one object, this object can become more complex than any individual col-
league. Subsequently, the mediator itself may become a monolith that is hard
to maintain.

Applicability

I used the Mediator pattern in the Terminal Installation application.

[Gamma+94]

Figure 30-9. Structure of the Design Pattern ‘Mediator’

ColleagueMediator

ConcreteColleague1ConcreteMediator ConcreteColleague2

mediator

Mediator Catalog of Applied Design Patterns

158

159

31 A Cookbook for Portable
Clients—A Pattern System

As a functional summation of this diploma thesis, this chapter presents a ‘cook-
book’ which describes how to implement a portable client for distributed environ-
ments. This cookbook recapitulates the results achieved with this project.

This chapter introduces the pattern system Portable Client, which I have based
on already existing design patterns. All of the implemented management applica-
tions in this project were accomplished using this pattern system.

This cookbook’s intension is to present a recipe which can be used for the
implementation of further management applications.

31.1 Portable Client

Context

You want to implement an application with a graphical user interface. This appli-
cation must manage data which is described in a specific business model. The data
is located on a particular platform. The application should be scalable to different
levels of user experience. Undo and Redo operations should be available.

Problem

You want to build the application in such a way that it can access an arbitrary
amount of platforms.

Solution

Divide your application into three layers:

■ The Sight: an application layer to present and administer the data.
■ The Admittance: an application programming interface layer for attaining

access to a specific platform.
■ The Transit: a data transfer layer, which deals as a translator and mediator

between the application layer and the application programming interface
layer.

Structure

Deployment

Programmer
Guide

Style Guide

Notations

Design
Patterns

Application
Cookbook

Bibliography

Glossary

Acronyms

Index

Appendix
Par t 6

Presentation Layer (The Sight)

Transfer Layer (The Transit)

Platform Access Layer (The Admittance)

Platform

The Sight A Cookbook for Portable Clients—A Pattern System

160

Collaboration

The presentation layer is responsible for presenting the data to the user. It keeps
track of the current state of the presented data. It allows the data to be manipu-
lated, to be retrieved from the storage base (the platform), and to be saved in the
storage base. The platform access layer knows how to communicate with a spe-
cific platform. In this layer is located the application programming interface (API)
for a specific platform. The transfer layer hides the complexity of the API from the
presentation layer. It marshals the data structure of the API into the format that
the presentation layer demands. In reverse, it transforms the data format of the
presentation layer into the format of the platform access layer. The transfer layer
communicates with the presentation layer with a standardized interface in which
the specific functionality of the platform access layer is wrapped.

Consequences

A specific platform and the access to that platform is transparent to the presenta-
tion layer. The presentation layer knows only the standardized interface of the
transfer layer and is unaware of the functionality of the platform access layer. This
allows for the exchanging of access form one platform to an other without affect-
ing the presentation layer.

31.2 The Sight

Context

You want to implement a graphical user interface to represent different aspects of
an underlying data base. To present the data, different views should be provided.
Different types of users should have different access rights for the modification of
data (read only, read and write, create, delete). The graphical user interface
should provide a way to undo changes to the data base.

Problem

The data core should be unaware of the views. Changes in the views should not
affect the data core. An update mechanism should provide a consistent state of
the views regarding changes in the data core.

Solution

To present and administer the data, use the Model-View-Controller pattern.
Redefine the Controller in such a way as to allow different views to apply differ-
ent access rights. To support undo and redo functionalities, use the Command
and the Command Processor pattern. Implement the undo and redo functionality
in the Command class. To avoid inconsistency, use the Singleton pattern to make
sure that only one instance of the model is used by the application.

Part 6: Appendix The Transit

161

Structure

Collaboration

The Sight pattern consists of five participants:

■ The model maintains the current state of a data entity.
■ The view represents the data to a user as retrieved from the model. The view

is able to query data directly from the model. A variation on this, could be to
implement the controller as a buffer between model and view, so that the
view can only communicate with the model by using the controller.

■ The controller checks the user input and creates an appropriate command.
■ The command processor receives a command from the controller.
■ The command processor stores the command for later undo or redo opera-

tions and invokes the command’s execution (do) operation.

31.3 The Transit

Context

You want to implement an application which uses an application programming
interface to access data which is stored on a specific platform. A migration from
one platform to another is targeted. Therefore, you need to exchange one API
with another.

Problem

How to design the application in such a way that neither changes in the API nor
the exchange of the API could result in changes in the presentation part of the
application.

Solution

Install, between the presentation layer and the API layer, a layer to mediate
between both layers. The layer provides a standardized interface towards the pre-
sentation layer transferring all data between the two layers and wrapping all API
commands of the API with the standardized operations. Use the Facade pattern
to wrap the complexity of the API. Use the Factory Method pattern to create dif-
ferent Transit (-Managers) during runtime.

View

Model

Controller

Command

Command Processor

The Admittance A Cookbook for Portable Clients—A Pattern System

162

Structure

Collaboration

The model uses a standardized command of the Transit manager, e.g. modify.
Such a command usually needs certain parameters, e.g. the data to be modified.
The transit manager converts the retrieved parameters into the data format
needed by the API. It then invokes the adequate command of the API including
the converted data.

Consequences

The usage of the API is transparent to the model. The API can be exchanged with-
out affecting the application layer.

31.4 The Admittance

Context

Provide an access to a system.

Problem

How to hide a complex access to a system.

Solution

Provide an application programming interface.

Also known as

Application Programming Interface (API).

Model Transit M. API

Invokes Command and

Invokes adequate API

sends data in its own
format

command with converted
data as parameter

convert data
to API format

The model asks for data
getData()

getData()

The API sends the Data
to the Transit Manager

The Transit Manager
converts the data into
the format needed by
the Model

The data is sent to the
Model

163

32 Bibliography

TINA-C

Abarca+97 Abarca, C. et al: TINA-C: Service Architecture 4.0, TINA-C Deliverable,
TB_RM.001_4.0_96; C. Abarca, P. Farley, J. Forslöw, T. Hamada, P.F. Hansen,
H.Hegeman, S.Hogg, H.Kamata, K.Kiwata, L. Kristiansen, C. Licciardi,
M.Mampaey, R.Minetti, H.Mulder, S.Pensivy, E.Utsunomiya, M. Yates; TINA-C:
28 October 1996.

Bagley96 Bagley, Mark: The Market for Information Services and its demands on TINA-
C (TINA-C Enterprise/Business Model), Version 2.0; TB_MB.001_2.0_95; March
5, 1996.

Berndt+95 Berndt, H. et al.: Service Architecture, Version 2.0, Document No.
TB_MDC.012_2.0_94; H. Berndt, C. Kim, S. Kim, H. Kobayashi, R. Minerva, K
Ohtsu, J. Pavon, F. Ruano, M. Wakano, H. Yagi; TINA-C, March 1995.

Brown+94 Brown, Dave and Stefano Montesi: Requirements upon TINA-C architecture;
TINA Baseline TB_MH.0002_2.0_94; February 17, 1994.

Chapman+95 Chapman, David and Stefano Montesi: Overall Concepts and Principles of
TINA; TINA Baseline, Document No. TB_MDC.018_1.0_94; February 17, 1995.

Christensen+95 Christensen H.:TINA-C: Information Modeling Concepts, TINA-C Deliverable,
Version 2.0, April 1995.

Farley+97 Farley, Patrick et.al: Service Architecture, Version 4.1; TINA-C Technical Report;
TR_PFH.01_4.1_97; January 17, 1997.

Fuente+94 Fuente, L.A. de la and Tony Walles: Management Architecture; TINA Baseline
Document No. TB_GN.010_2.0_94; December 1994.

Graubmann+94 Graubmann, P. et al: TINA-C: Engineering Modeling Concepts (DPE
Architecture) / P. Graubmann, W. Hwang, M. Kudela, K. MacKinnon, N.
Mercouroff, N. Watanabe; TINA Baseline TB_NS.005_2.0_94; December 1994.

Handegård+96 Handegård, Tom (ed): TINA-C: Computational Modeling Concepts, TINA
Baseline, TP_HC.012_3.2_96, 17 Mai 1996.

Mulder97 Mulder, Harm: TINA-C Glossary of Terms; Version 2.0; TINA-C Overall
Deliverable; BL_HM.001_2.0_970107; January 7; 1997.

Leydekkers+95 Leydekkers, P. et al: TINA-C: TINA Distributed Processing Environment
(TINA-DPE), Version 1.0 / P. Leydekkers, K. McKinnon, N. Mercouroff; TINA
Stream Deliverable, TB_PL.001_1.0_95, August 2, 1995.

Leydekkers+95a Leydekkers, P. et al: TINA-C: TINA Distributed Processing Environment
(TINA-DPE), Version 1.3 / P. Leydekkers, K. MacKinnon, N. Mercouroff; TINA-
C Core Team reviewed; Document No. TR_PL.001_1.3_95; December 21, 1995.

Parhar96 Parhar, A: Object Definition Language Manual Version 2.3, TINA-C Stream
Deliverable, TR_NM.002_2.2_96,July 22, 1996.

Par t 6:

Bibliography

164

Abarca+96 Abarca, Chelo et al: TINA-C: Comments on PCS auxiliary project Report Version
1.0 (Draft) / Chelo Abarca, Hans Hegeman, Lill Kristiansen, E. Utsunomiya;
TINA-C Engineering Note, November 1996.

Takita+97 Takita Watura and Takashige Hoshiai (Editors): Computational Modeling
Concepts, Version 3.3.0; TINA-C Draft Deliverable TDB_WTTH.001_3.3.0_97;
21st February 1997.

Yates+97 Yates, Martin et al: TINA Business Model and Reference Points (formerly
TINA Reference Points), Version 4.0 / Martin Yates, Wataru Takita, Laurence
Demoudem, Rickard Jansson, Harm Mulder; TINA-C Baseline; February 25,
1997.

Java

Aitken96 Aitken, Gary: Automatically Generating Java Documentation: javadoc and the
doc comment; Dr. Dobb’s Journal, July 1996.

Arnold+96 Arnold, Ken; James Gosling: The Java Programming Language; Addison-
Wesley 1996.

Flanagan96 Flanagan, David: Java in a Nutshell: A dEsktop Quick Reference for Java
Programmers; O’Reilly & Associates, Inc; 1996.

Geary+97 Geary, David M. and Alan L. McClellan: Graphic Java: Mastering the AWT;
SunSoft Press; 1997.

Gosling95 Gosling, Arnold: The Java Language Environment: A White Paper; Sun
Microsystems Computer Company; October 95.

Lea96 Lea, Doug: Concurrent Programming in Java: Design Principles and Patterns–
The Java Series; Addison-Wesley Publishing Company; 1997.

Niemeyer+96 Niemeyer, Patrick; Joshua Peck: Exploring Java; O’Reilly & Associates, Inc; 1996

Oaks+97 Oaks Scott et.al: Java Threads; O’Reilly & Associates, Inc; 1997.

Papurt+96 Papurt, David M. and Jean Pierre LeJacq: Design with Java: Design aspects of the
Standard I/O Library; Journal of Object-Oriented Programming; pp 6;
November-December 1996.

Wayne96 Wayner, Peter: Better Java Programming; Knowing how Java’s dynamic linking
works can help you improve a program’s performance. BYTE: September 1996;
page 63.

Java Coding Style Guidelines

Friendly95or96 Friendly, Lisa: The Design of Distributed Hyperlinked Programming
Documentation; Sun Microsystems Inc.; no year (approximately 1996).

Lea97 Lea, Doug: Draft Java Coding Standards; http://gee.cs.oswego.edu/dl/html/
javaCodingStd.html; February 11, 1997.

Naval96 Naval Postgraduate School: Java Style Guide; http://dubhe.cc.nps.navy.mil/
~java/course/styleguide.html; July 8, 1996.

Bibliography

165

Sandvik96 Sandvik, Kent: Java Coding Style Guidelines; http://reality.sgi.com/sandvik/
JavaGuidelines.html; 1996.

Davis97 Davis, Mark: Java Cookbook: Porting C++ to Java; Taligent; available as Acrobat
File via WWW: http://www.taligent.com/Technology/WhitePapers/
PortingPaper/index.html; January 23, 1997.

PCS in TINA

Arbanowski+96 Arbanowski, S. et al: TINA-C Auxiliary Project: Personal Communications
Support in TINA, Report No. 1, Version 1.0 / S. Arbanowski, T.Eckardt, P.
Kielhöfer, T. Magedanz, U. Scholz, S. van der Meer, M. Vetter, H. Wang; GMD
FOKUS, Berlin; June 28, 1996.

Eckardt+96a T. Eckardt et al.: TINA-C Auxiliary Project: Personal Communications
Support in TINA, Report No. 2, Volume 1,Version 1.0; T. Eckardt, A. Guther,
L.Hagen, P. Kielhöfer, U. Scholz, H. Wang; GMD FOKUS, Berlin; December 19,
1996.

Arbanowski+96a Arbanowski, S. et al: TINA-C Auxiliary Project: Personal Communications
Support in TINA, Report No. 2, Volume 2: ODL Specifications, Version 1.0/ S.
Arbanowski, P. Kielhöfer, S. van der Meer, H. Wang; GMD Fokus, Berlin;
December 19, 1996.

CORBA

Eckert95 Eckert, Klaus-Peter: The Object Management Group - OMG Concepts,
Architectures and Experiences; Recommendations for the Migration of
Multimedia Teleservices to the world of Distributed Object Systems; Release 1.0;
BERKOM-Project: “Multimedia Teleservices (MMTS)”; GMD-FOKUS;
Deliverable January 31, 1995.

HP95 Hewlett-Packard. HP Distributed Smalltalk: HP Distributed Smalltalk 4.0,
White Paper, January 1995.

HP95a Hewlett-Packard. HP Distributed Smalltalk: HP Distributed Smalltalk Release
5.0 Release Notes, October 1995.

HP95b Hewlett-Packard: HP-DST Programmer’s Reference Guide, Release 5.0

IONA94 ONA Technologies Ltd.: Designing and Building Distributed Applications
with Orbix and CORBA, Tutorial Material, 1994.

IONA95 IONA Technologies Ltd.: The Orbix Architecture, November 1995.

IONA95a IONA Technologies Ltd.: Programming Guide Orbix 2, Release 2.0, November
1995.

Kitson95 Kitson, B.: CORBA and TINA: The Architectural Relationships, Proceedings of
the TINA’95 Conference, Melbourne, Australia, February 1995.

Mowbray+95 Mowbray, J. Thomas and Ron Zahavi: The Essential CORBA: Systems
Integration Using Distributed Objects; John Wiley & Sons, Inc; 1995.

OMG:ORB95 Object Management Group (OMG): The Common Object Request Broker:
Architecture and Specification, Revision 2.0, July 1995.

Bibliography

166

OMG:Services95 Object Management Group (OMG): CORBAservices: Common Object Services
Specification; Revised Edition, March 1995, OMG Document Number 95-3-31.

OMG:Mgmt95 Object Management Group (OMG): Object Management Architecture Guide,
Revision 3.0, June 1995.

OMG:Facilities95 Object Management Group (OMG): Common Facilities Architecture; Revision
4.0, OMG Document 95-1-2, January 3, 1995.

Orfali+96 Orfali, Robert; Dan Harkey, Jeri Edwards: The Essential Distributed Objects
Survival Guide; John Wiley & Sons, Inc.; 1996.

Orfali+97 Orfali Robert and Dan Harkey: Client/server programming with Java and
CORBA; John Wiley & Sons, Inc.; 1997.

Vinoski97 Vinoski, Steve: CORAB: Integration Diverse Applications Within Distributed
Heterogeneous Environments; IEEE Communications Magazine, pp 46-55;
February 1997.

Visigenic96a Visigenic: Programmer’s Guide Version 1.0: VisiBroker for Java; 1996.

Visigenic96b Visigenic: Reference Guide Version 1.0; VisiBroker for Java; 1996.

TANGRAM

Durmosch+97 Durmosch, M. Khayrat and Klaus-D. Engel: The TANGRAM DPE: A
Distributed Processing Environment in A Heterogeneous CORBA 2 World;
HICSS-30, Hawaii, January 1997.

Egelhaaf96 Egelhaaf, Chr.(Editor): Recommendations for a CORBA Based Distributed
Processing Environment; Provisional Report; Release 1.0; TINA-C auxiliary
project; GMD-FOKUS; March 31, 1996.

Eckert+95 Eckert, Klaus-Peter et al: Open Distributed Processing Platforms for Support
of Telecommunication Applications and their Management / Klaus-Peter
Eckert, Peter Schoo, Gerd Schürmann; GMD-FOKUS; June 1995.

Schoo95 Schoo, Peter (Editor): Tangram - A Visionary Project on Information
Networking, Release 1.2; BERKOM Project TANGRAM; GMD-FOKUS;
September 30, 1995.

Schoo+96 Schoo, Peter and Klaus-Peter Eckert (Editors): BERKOM Project TANGRAM:
Experiences with TINCA-C Results and CORBA 2 Products; Deliverable for the
4th milestone of the TANGRAM Project; Edited by P. Schoo and K.-P.Eckert; Release
1.3; August 31, 1996.

Eckert96 Eckert, Klaus-Peter (Editor): Specification of the TANGRAM Framework, Final
Version - Deliverable for MS 2, Release 1.6, BERKOM Project TANGRAM; GMD-
FOKUS; January 1996.

Object-Oriented Programming

Budd91 Budd, Timothy: An Introduction to object oriented programming; Addison-
Wesley, April 1991.

Booch91 Booch, Grady: Object oriented design with applications; The Benjamin/
Cummings Publishing Company, Inc.; 1991.

Bibliography

167

Jacobson+92 Jacobson, Ivar et al: Object-Oriented Software Engineering: A Use Case Driven
Approach; Addison-Wesley; 1992, reprint from 1995.

Khoshafian+95 Khoshafian, Setrag and Razmik Abnous: Object Orientation, Second Edition;
John Wiley & sons, Inc.; 1995.

Webster95 Webster, Bruce F.: Pitfalls of object-oriented development: a guide for the wary
and the enthusiastic; M&T Books; 1995.

Design Patterns

Alexander+77 Alexander, Christopher et al: A Pattern Language: Town, Building, Construction
/ Christopher Alexander, Sara Ishikawa, Murray Silverstein with Max Jacobson,
Ingrid Fiksdahl-King, Shlomo Angel; New York, Oxford University Press, 1977.

Brown+95 Brown Kyle and Bruce G. Whitenack: Crossing Chasms: A Pattern Language for
Object-RDBMS Integration; “The Static Patterns”; Technical Journal; available
via http://www.ksccary.com/; no year, approximately 1995.

Coplien94 Coplien, James O.: Software Design Patterns: Common Questions and Answers;
AT&T Bell Laboratories, Software Production Research Department; no year but
approximately 1994.

Coplien97 Coplien, James O.: Idioms and Patterns as Architectural Literature; IEEE
Software; pp 36; January 1997.

Beck+94 Beck, Kent: Patterns Generate Architectures; Kent Beck and Ralph Johnson;
European Conference for Object Oriented Programming; ftp://st.cs.uiuc.edu/
pub/patterns/papers/patterns-generate-archs.ps.

Buschmann+96 Buschmann, Frank et.al: A System of Patterns: Pattern-Oriented Software
Architecture; Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, Michael Stal; Chichester, New York a.o.: John Wiley & Sons; 1996.

Fowler97 Fowler, Martin: Analysis Patterns: Reusable Object Models; Addison-Wesley
Publishing Company; 1997.

Gamma+94 Gamma, Erich et al.: Design Patterns: elements of reusable object oriented
software; Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides; Addison-
Wesley Publishing Company; 1994 (Fifth printing December 1995).

Helm95 Helm Richard: Patterns & Software Design: Observations on Observer; Dr.
Dobb’s Journal on CD ROM; \DDJ_CD\1995_2.HW4; 1995.

Kerth+97 Kerth, Norman L. and Ward Cunningham: Using Patterns to Improve Our
Architectural Vision; IEEE Software; pp 53; January 1997.

Krasner+88 Krasner, Glenn E. and Stephen T.Pope: A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80; Journal of Object-
Oriented-Programming, August/September 1988.

Mellor+97 Mellor, Stephen J and Ralph Johnson: Why Explore Object Methods, Patterns,
and Architectures?; IEEE Software; pp 27; January 1997.

Mowbray+97 Mowbray, Thomas J. and Raphael Malveau: Corba design patterns; John Wiley
& Sons, Inc, 1997.

Bibliography

168

Monroe+97 Monroe, T. Robert et al: Architectural Styles, Design Patterns, and Objects;
Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan; IEEE
Software; pp 43; January 1997.

Nielsen+96 Nielsen, Mark and Nick Abdo: Applying Design Patterns to PowerBuilder; The
Observer pattern provides a window communication mechanism; Dr. Dobb’s
Journal, June 1996.

Riehle96 Riehle, Dirk: Describing and Composing Patterns Using Role Diagrams;
Ubilab, Union Bank of Switzerland; 1996.

Riehle96a Riehle, Dirk: The Event Notification Pattern–Integrating Implicit Invocation
with Object-Orientation; To be published in Theory and Practice of Object
systems 2, 1 (1996); available via ftp from Ubilab, Union bank of Switzerland;
1996.

Riehle+96 Riehle Dirk and Heinz Züllighoven: Understanding and Using Patterns in
Software Development; To be published in Theory and Practice of Object
Systems 2, 1 (1996); available via ftp from Ubilab, Union Bank of Switzerland.

Riehle97 Riehle, Dirk: A Role-Based Design Pattern Catalog of Atomic and Composite
Patterns Structured by Pattern Purpose; Ubilab Technical Report 97-1-1; Union
Bank of Switzerland; 1997.

Pree95 Pree, Wolfgang: Design Pattern for Object-Oriented Software Development;
Addison-Wesley Publishing Company; 1995.

Vlissides+96 Vlissides John M. et al. (Editors): Pattern Languages of Program design 2; edited
by John M. Vlissides, James O. Coplien, Norman L. Kerth; Addison-Wesley
Publishing Company; 1996.

Xin96 Shu, Xin: Fitting Design Patterns into Object-Oriented Methods; Doctoral
Thesis; University of Illinois at Chicago; 1996.

Design Patterns in the Internet

Portland-W3 Portland Pattern Repository: www.c2.com/ppr; This is a large collection of Web
sites about Design Patterns.

Schmidt-W3 Schmidt, Douglas: Design Patterns and Pattern Languages:
www.cs.wustl.edu/~schmidt/patterns.html

UIUC-W3 University of Illinois: Patterns Homepage; st-www.cs.uiuc.edu/users/patterns;
Another good collection of Web sites about Design Patterns.

Vlissides96-W3 Vlissides John: Pattern Hatching: To kill a Singleton;
www.sigs.com/publications/docs/cppr/9606/cppr9606.c.vlissides.html; 1996.

Modeling and Design

Balzert94 Balzert, Helmut: Von OOA zu GUIs – das JANUS-System; OBJEKTspektrum 4/
94; pp 43; 1994.

D’Souza96 D’Souza, Desmond: Interfaces, subtypes, and frameworks; Journal of Object-
Oriented Programming; pp19; November-December 1996.

Bibliography

169

D’Souza97 D’Souza, Desmond: Collaborations: Behond subtypes; Journal of Object-
Oriented Programming; January 1997.

Jacobson+95 Jacobson, Ivar et al: Modeling With Use Cases: Using contracts and use cases to
build plugable architectures; Ivar Jacobson, Stefan Bylund, Patrick Jonsson,
Staffan Ehneboom; Journal of Object-Oriented Programming; pp 18; March 1995.

Meyer94 Meyer, Bertrand: Reusable software: The Base object-oriented component
libraries; Prentice Hall International (UK) Limited; 1994.

Rational97a Unified Modeling Language: Notation Guide; Version 1.0; Rational Software
Corporation; January 13, 1997.

Rumbaugh94 Rumbaugh, James: Eine Betachtung der Architektur Model-View-Controller
(MVC); in OBJEKTspektrum 3/94; pp 49; 1994.

Rumbaugh+91 Rumbaugh, James; Micahel Blaha, William Premerlani, Frederick Eddy, William
Lorensen: Object-Oriented Modeling and Design; Prentice-Hall Inc.; 1991.

Rumbaugh95 Rumbaugh, James: What is a method?; Journal of Object-Oriented
Programming; pp 10; Vol 8, No 6; October 1995.

Rumbaugh95a Rumbaugh, James: Driving to a solution: Reification and the art of system
design; Journal of Object-Oriented Programming; pp6, Vol 8, No 4; July/August
1995.

Rumbaugh96a Rumbaugh, James: Packaging a system: Showing architectural dependencies;
Journal of Object-Oriented Programming; pp11; November-December 1996.

Rumbaugh96b Rumbaugh, James: Layered additive models: Design as a process of recording
decisions; Journal of Object-Oriented Programming; pp 21; March-April 1996.

Shaw+96 Shaw, Mary and David Garlan: Software Architecture: Perspectives on an
Emerging Discipline; Prentice Hall; 1996.

Tepfenhart+97 Tepfenhart, William M and James J. Cusick, AT&T: A Unified Object Topology;
IEEE Software; pp 31; January 1997.

General Programming

Arthur93 Arthur, Lowell Jay: Improving Software Quality: An Insider’s Guide to TQM;
John Wiley & Sons, Inc.; 1993.

McConnell93 McConnell, Steven C: Code complete: a practical handbook of software
construction; Microsoft Press; 1993.

Maguire93 Maguire, Stephen A.: Writing Solid Code: Microsoft’s Techniques for
Developing Bug-Free C-Program; Microsoft Press; 1993.

Graphical User Interface

Cooper95 Cooper, Alan: About Face: The Essentials of User Interface Design; IDG Books
Worldwide, Inc.; 1995.

Bibliography

170

Horton94 Horton, William: Das Icon-Buch: Entwurf und Gestaltung visueller Symbole und
Zeichen (American issue: The Icon book: visual symbols for computer systems
and documentation by John Wiley & Sons, Inc. 1994); Addison-Wesley
(Deutschland) GmbH; 1994.

Howlett96 Howlett, Virginia: Visual Interface Design for Windows: Effective User
Interfaces for Windows 95, Windows NT, and Windows 3.1; John Wiley & Sons,
Inc.; 1996.

Weinschenk+95 Weinschenk, Susan and Sarah C. Yeo: Guidelines for Enterprise-Wide GUI
Design; John Wiley & Sons, Inc; 1995.

Miscellaneous

Kitson95a Kitson, B.: PLATyTools and ODL, Proceedings of the TINA’95 Conference,
Melbourne, Australia, February 1995.

Magedanz+96 Magedanz, Thomas and Radu Popescu-Zeletin: Intelligent Networks;
International Thompson Computer Press; 1996.

171

33 Glossary

Common Object
Request Broker
Architecture

CORBA—An architecture which specifies a system which provides interope-
rability between objects in a heterogeneous, distributed environment. Its
design is based on the OMG Object Model.

Design Pattern Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice (Alexander+77 p. X)

Generic Session
End Point

GSEP—A service independent computational object which models the mini-
mum set of capabilities as an end-point of an Access Session and (service) ses-
sion control. As an end-point of Access Session, a GSEP interacts with a User
Agent to access services. As an end-point of (service) session control, a GSEP
interacts with User Service Session Managers to invoke operations for (ser-
vice) session control. (Berndt+95 p 6-4).

Hypertext
Markup Language

HTML—The document description language used in WWW browsers to dis-
play documents

Interface
Definition
Language

IDL—A declarative interface definition language which is programming lan-
guage independent. IDL has a syntax resembling that of C++.

Information
Specification

An information specification is a description of a structure that models the
information in a system (domain of discourse, or problem domain) in terms of
information bearing entities, relationships between the entities, and con-
straints and rules that govern their behavior, including creation and deletion
(Christensen+95, p. 2-3).

Information
objects

An Information object is an object that occurs in an information specification.
Information objects model the basic information entities in an information
specification. Henceforth whenever we write ‘object’ without any qualifier,
we mean “information object”. Each object has an identity, which is an intrin-
sic, invariable part of the object. Although two objects are otherwise equal,
they are considered as separate objects if they have different identifies (Chris-
tensen+95, p. 3-1).

Interoperable
Object Reference

IOR—An object reference for objects within a distributed ORB system.
CORBA 2.0 defines, that vendors must use IORs to pass object references
across heterogeneous ORBs.

javac A compiler for generating Java binaries

javadoc A compiler for generating HTML online documentation. To generate online
help files, javadoc uses special comments in Java source code files.

Location
Computational
Object

A Location computational object, within the definitions of the PCS in TINA
project, is normally a room or a zone with given borders in which a set of ter-
minal is located.

Local Context LCxt—The Local Context computational object within the definitions of the
PCS in TINA project describes a set of end user terminals located in a specific
location.

Par t 6

Glossary

172

Object Reference An unique name or identification for an object within a distributed ORB Sys-
tem.

Object Request
Broker

ORB—commercially known as CORBA; the ORB is the communication heart
of the standard. It provides an infrastructure allowing objects to converse,
independent of the specific platforms and techniques used to implement the
objects. Compliance with the Object Request Broker standard guarantees
portability and Interoperability of objects over a network of heterogeneous
systems.

Pattern Catalogue A pattern catalog is collection of related patterns (perhaps only loosely or
informally related). It typically subdivides the patterns into at least a small
number of broad categories and may include some amount of cross referenc-
ing between patterns.

Pattern Language Pattern languages define the patterns germane to a given domain and the
ways in which they should be combined. Ideally, a pattern language shows all
of the ways to build all ‘good’ architectures within a domain.

Pattern System A pattern system is a cohesive set of related patterns which work together to
support the construction and evolution of whole architectures. Not only is it
organized into related groups and subgroups at multiple levels of granularity,
it describes the many interrelationships between the patterns and their group-
ings and how they may be combined and composed to solve more complex
problems.

Registration
Server

It provides automatic or manual registration of a person at a location.

Service Access
Layer

The Service Access Layer is the layer in which the API functionality is located.

Service Access
Management
Layer

SAM—The Service Access Management Layer is the layer between the Appli-
cation Layer and the Service Access Layer. It serves as a mediator between
applications and the API.

TANGRAM DPE The TANGRAM DPE is a TINA compliant platform which was developed at
GMD FOKUS to evaluate the TINA Service Architecture.

Terminal
Equipment Agent

TE-A—A Terminal Equipment Agent represents a user system within the pro-
vider domain. A TE-A maintains information on resource configuration of a
user system, e.g. access points, user applications, stream interfaces and
Generic Session End-points.

User Application UAP—A User Application is defined to model a (variety) of service applica-
tions(s) in a user system. It acts as an end-point of a Service Session. Zero or
more stream interfaces (i.e. end-point of Communications Sessions) can be
attached to a UAP. The stream interface can be bound to those in other user
systems and/or those in the provider domain (e.g., those attached to video
servers) by Communication Session Managers (Berndt+95 p 6-4).

User Agent UA—A User Agent is a computational object that represents a user in the pro-
vider domain. Operations supported by a UA are service independent
(Berndt+95 p6-4).

173

34 Acronyms

AIN Advanced Intelligent Network

API Application Programming Interface

ATM Asynchronous Transfer Mode

AWT Abstract Window Toolkit

B-ISDN Broadband-Integrated Service Digital Network

BOA Basic Object Adapter

CORBA Common Object Request Broker Architecture

CPE Customer Premises Equipment

DPE Distributed Processing Environment

ESIOP Environment-Specific Internet-ORB Protocol

GIOP General Inter-ORB Protocol

GMD German National Research Center for Information Technology

HTML Hypertext Markup Language

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IN Intelligent Network

ISDN Integrated Service Digital Network

JDK Java Development Kit

LCxt Local Context

NAP Network Access Point

NCCE Native Computing and Communication Environment

ODL Object Definition Language

OMA Object Management Architecture

OMG Object Management Group

ORB Object Request Broker

PCS Personal Communications Support

PPrf Personal Profile

PSTN Public Switched Telephone Network

Par t 6

Acronyms

174

TCP/IP Transmission Control Protocol / Internet Protocol

TE-A Terminal Equipment Agent

TINA Telecommunications Information Networking Architecture

TINA-C Telecommunications Information Networking Architecture Consortium

TMN Telecommunication Management Network

UA User Agent

UCxt Usage Context

UPT Universal Personal Telecommunications

USM User Session Management

WWW World Wide Web

175

35 Index Par t 6

A
Access Application

the object 19
Access Session 10, 11, 13, 15, 19, 69

~Configuration Manager .. 26, 30
PCS-enhanced 15, 17
Provider Domain 19
User Domain 19

Applets 93
Init method, in ~

init method 93
Appletviewer 93
Application Layer9, 72, 73
Applications 93

Main method in ~ 93
AssCm 26

B
B-ISDN .. 9

C
Class

AbstractController 71
AbstractFactory 71
AbstractLCxtManager 83
AbstractManager 71
AbstractMngmtException 72
AbstractRegServerManager 85
AbstractUserManagement 77
Box .. 89
CodingAttribute 80
CodingAttributes 80
CodingAttributesController 80
CodingQuality 80
Command 71
CommandCopy 78, 83
CommandCreate 78, 83
CommandDelete 78, 83
CommandException 72
CommandModify 78, 83
CommandProcessor 74
ControllerException 72
Debugger 87
DlgAbout 89
DlgCodingQuality 90
DlgListOfLocations 89

DlgListOfUser89
DlgListTerminalLabels89
DlgLoggingOptions89
DlgRemoveInfo91
DlgSupportedCodings91
DlgTellUser89
DlgWarning91
Ensure87
EnumCommunicationProtocols ...

80
EnumPresentationSupport80
EnumSupportedBearer80
EnumSupportedCodings80
EnumSupportedMedia80
EnumSupportedMode80
EnumSupportedServices80
EnumTerminalNames80
EnumTerminalType80
EnumUserNames78
Environment87
GrpBoxAvailableUser89
GrpBoxCodingName91
GrpBoxCodingQuality91
GrpBoxConnectionControl91
GrpBoxLCxt90
GrpBoxListOfCodingNames91
GrpBoxListOfLocations89
GrpBoxListOfTerminals89
GrpBoxRegisteredUsers91
GrpBoxRegistrationDeletion91
GrpBoxServiceControl91
GrpBoxTEAsOfLCxt90
GrpBoxTerminalControl91
GrpBoxTerminalInfos89
GrpBoxTerminalName91
GrpBoxTerminalState91
GrpBoxUserInfo90
GrpBoxWarning91
LCxt ...83
LCxtController83
LCxtDataController83
LCxtListController83
LCxtModel83
LCxtModelMessage83
LCxtSamFactory83
LCxtSamTANGRAM83
LCxtView84
ListOfTerminals84
Location84
MgmtApplet89
MgmtDialog89
MgmtFrame89
MgmtLFLGroupBox89
MgmtPanel89

MngmtException72
ModelException72
ORACLE_UserManager78
PanelLCxt90
PanelLocations90
PanelUserList90
Pictures87
RegServerModel85
RegServerModelMessage85
RegServerSamFactory85
RegServerSamTANGRAM85
Require87
ServiceIdList80
SilentDebugger87
StandardDebugger87
TANGRAM_UserManager78
TeA ..80
TEAAbstractManager80
TEAManagerFactory80
TEAManagerTANGRAM80
TeaModel81
TeaModelMessage81
TeapConstants81
TeaProducer81
TeaProducerContainer81
TermAttributes81
TermConnAttributes81
Terminal81
TerminalController81
TerminalMediator91
TermInfo81
TermServAttributes81
TermState81
ToFileDebugger87
Ua ..78
User ...78
UserController78
UserDataController78
UserList78
UserListController78
UserManagerFactory78
UserModel78
UserModelMessage78
UserRegistration85
UserView78
View ..71
ViewException72

Client
Fat ~ ...95
Thin ~95

Command Processor, mapping to .
71
Communication

Environment17

Index

176

Session11
Communication Session 10, 11
Configuration Manager . 24, 26, 69

Context24
Control Interface29
CORBA 94, 95

Interface23
Life Cycle Service36
Relationship Service35
Version 2.021

CORBAfacilities13
CORBAservice13
Core-Object29
CosNaming69
CPE ..17

D
Distributed

~ Processing Environment ... 9, 22
Kernel22
Node22

~Objects12
Processing Environment9

E
End User System69
Enumeration80
EnvCm26
Environment Configuration Man-
ager ..26
ESIOP ...36

F
Factory Method71
Fat client95

G
Gateway 95, 96
General Inter-ORB Protocol37
GIOP

see General Inter-ORB Protocol

H
Hardware Resource Layer 9, 10
HotJava 93
HP Distributed Smalltalk 21, 24
HP-DST

see HP Distributed Smalltalk

I
Identification 19
idl2java 69, 96
IIOP 36, 37
Implementation Repository 24
Interface

Debuggable 88
Multiple 23

Internet Explorer 93
Internet Inter-ORB Protocol . 36, 37
Interoperable Object Reference . 24,
36, .. 38, 95
Inter-ORB Protocol

Environment-Specific 36
Internet 36

Invitation 18
Forwarding 18
Requests 19

Invitation Handling
Control 18
Logic 18
Logic Management 19
Policy 18
Time Dependent 18

Invitation Screening 18
IONA ... 21
IOR

see Interoperable Object Reference
ISDN .. 9

L
LCM

see Life Cycle Manager
Life Cycle

~Manager25, 28, 31, 69
~Service 25

Local Context 17
Views 68

M
Management Layer71
Mediator object75
mgmt ..68
Microsoft93
Mobility11, 16

Personal15
Session15
Terminal15

Mobility Support
Personal15

Model-View-Controller71, 78
MVC

see Model-View-Controller

N
Naming

Context69
Service24, 25

Native Computing9
Communications Environment .9,

10
NCCE 9, 10, 21
Netscape93, 95

Navigator93
Network Management9

O
Object Group13
Object Management Architecture ..
13
Object Management Group12
Object Request Broker13
Observer Pattern144
OMG

see Object Management Group
Orbix ..21

P
Package

Dialogs68
Management68
mngmt71
Naming Context69
Tangram69

Packages67
Pattern

Command149
Command Processor .. 78, 83, 150

Part 6: Appendix

177

Facade78, 85, 155
Factory Method78, 80, 83, 85,

152
Layers78, 85, 143
Mediator 156
Message78, 81, 83, 85
Model-View-Controller81,83,

85, 146
Observable 78
Observer 144
Shopper 81
Singleton 154

Personal
Mobility 11, 16

Personal Communications Support
... 19

Personal Mobility Support 16
Platform

Access 75
Privacy 17
Processing Environment

see Distributed Processing Envi-
ronment

Provider
Domain 24
Service Session 11

Provider Domain
Access Session 19

R
Reachability 15
Registraiton Server Views 68
Registration

at Locations 16, 17
at Terminals 16, 17
Scheduled 17
Scheduled ~ 17
Server 24

Registration Schedule
Management 19

Registration Server Views 68
Repository

Implementation 24
Interface 24

S
Secretary

Electronic 17
Separation Aspects 12
Service Access Layer 76
Service Access Manager Layer .. 72
Service Session10, 11, 15
Session

Concepts 10

Mobility11
Smalltalk95

Image95
Smalltalk Image95
Software Engineering9
Statusbar object75
Stream Deliverable Documents9

T
T_Bearer80
T_Coding80
T_Coding_Attribute80
T_CodingQuality80
T_Comm_protocol80
T_Media80
T_Mode80
T_PresentationSupport80
T_ServiceIdList80
T_TermAttributes81
T_TermConnAttributes81
T_Terminal81
T_TermInfo81
T_TermServAttributes81
T_TermState81
T_TermType80
TANGRAM

Engineering Concepts25
Services24

TANGRAM DPE95
TEA.ODL79
Telecommunication Applications
Layer ..9
Terminal

~Equipment Agent17
~Mobility11

Terminal Equipment Views68
Terminal Management79
Thin client95
TINA

Application Layer9
Baseline Documents9
Layered Architecture9
Network19
Session Concept10

U
UA.ODL77
UAP ...74
UCxt

see Usage Context
Usage Context17

Computational Object16
User

~ Service Session11

Agent18
Domain19
Location17
Profile Management18
Registration19
Session16

User Agent Management77
User Domain

Access Sessions19
User Session Management16
USM

see User Session Management

V
Visibroker96
Visigenic96
Visual elements93

W
Web Server95

Index

178

	Design and Implementation of a Management Toolset ...
	Design and Implementation of a Management Toolset ...
	Vorbemerkung
	Contents at a Glance
	Part 1 Basic Concepts, Principles and Rules
	Part 2 Requirements and Design
	Part 3 Implementation
	Part 4 Views–The Graphical User Interface
	Part 5 Conclusion
	Part 6 Appendix

	Zusammenfassung
	Abstract
	Acknowledgments
	Table of Contents
	1 Introduction 1
	Part 1 Basic Concepts, Principles and Rules
	2 Telecommunications Information Networking Archit...
	3 Personal Communication Support 15
	4 The TANGRAM DPE in Relationship to the PCS 21
	5 Common Object Request Broker Architecture 33

	Part 2 Requirements and Design
	6 Requirement Specification 41
	7 Management Toolset Architecture 45
	8 Objects to be Managed 57
	9 Package Concepts and Design 59

	Part 3 Implementation
	10 Package Usage 67
	11 Abstract Classes, Interfaces and Exceptions 71
	12 Dynamic Model 73
	13 User Agent Management 77
	14 Terminal Management 79
	15 Location Management 83
	16 Registration Management 85
	17 Utilities 87
	18 Graphical User Interfaces 89
	19 Java’s Applications and Applets 93

	Part 4 Views–The Graphical User Interface
	20 User Data Management 99
	21 Terminal Equipment Management 103
	22 Location and Location Context Management 109
	23 Registration Management 113

	Part 5 Conclusion
	24 Summary 119
	25 Suggestions for Future Extensions 123

	Part 6 Appendix
	26 Deployment 129
	27 Programmers Guide 133
	28 Style Guide 135
	29 Notations 137
	30 Catalog of Applied Design Patterns 141
	31 A Cookbook for Portable Clients—A Pattern Syste...
	32 Bibliography 163
	33 Glossary 171
	34 Acronyms 173
	35 Index 175

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	Figure 1-1. Distributed Access to PCS Components
	Figure 1-2. Impacts on this Work

	1.2 Thesis Project Scope
	1.3 Guide to Readers
	Figure 1-3. Structure of this Work

	1.4 Map Through this Book
	Figure 1-4. Map Through this Book

	Basic Concepts, Principles and Rules
	User Agent
	2 Telecommunications Information Networking Archit...
	TINA
	2.1 TINA Layered Architecture
	2.1.1 TINA Applications Layer
	2.1.2 Distributed Processing Environment Layer
	2.1.3 Native Computing and Communications Environm...
	2.1.4 Hardware Resource Layer
	Figure 2-1. Basic Structure of Telecommunications ...

	2.2 TINA Session Concept
	2.2.1 Access Session
	2.2.2 Service Session
	User (Service) Session
	Provider Service Session

	2.2.3 Communication Session

	2.3 Separation Aspects
	Figure 2-2. Support of Multiple Communication Sess...

	2.4 Processing Environment for Distributed Objects...
	2.5 Summary
	3 Personal Communication Support

	TINA
	3.1 Overview
	3.1.1 Personal Mobility Support
	Registration at Terminals
	Registration at Locations

	3.1.2 Control of Reachability
	3.1.3 User Profile Management

	GSEP
	User Registration
	Invitation Handling Logic Management
	Registration Schedule Management
	3.2 Access Session Information Model
	Figure 3-1. PCS–Enhanced Access Session Informatio...

	4 The TANGRAM DPE in Relationship to the PCS
	TINA
	4.1 Introduction
	Figure 4-1. The TANGRAM DPE

	4.2 General Concepts

	Distribution Transparency
	Figure 4-2. Usage of Different ORB Domains in TANG...
	Interfaces
	Core TINA Objects
	Figure 4-3. Mapping of TINA Computational Objects ...

	4.3 TANGRAM Services

	Repositories
	Naming Service
	Figure 4-4. The TANGRAM Naming Graph

	IOR
	Life Cycle Service
	Figure 4-5. The TANGRAM Configuration and Lifecycl...

	4.4 TANGRAM Engineering Concepts
	4.4.1 Common Data Types
	T_CompObjectType
	T_CoIntRefList
	T_IntRefList
	Exceptions

	4.4.2 Configuration Manager

	AccessSession Configuration Manager Environment Co...
	Interface Definitions
	Factory Exception Codes
	4.4.3 Life Cycle Manager
	Interface Definitions
	Factory Exception Codes
	Naming Exception Codes

	4.4.4 Computational Object Control Interface

	I_CoControl interface
	Figure 4-6. Creation of an Object Instance
	Interface Definitions
	Exceptions
	4.4.5 Access Session Configuration Manager
	Figure 4-7. Engineering Viewpoint on Management

	5 Common Object Request Broker Architecture
	TINA
	5.1 Introduction
	5.2 CORBA Components
	5.2.1 Application Objects
	5.2.2 Common Facilities
	Figure 5-1. Common Object Request Broker Component...

	5.2.3 Common Object Services

	5.3 Object Services
	5.3.1 CORBA Naming Service
	5.3.2 CORBA Relationship Service
	5.3.3 CORBA Life Cycle Service

	5.4 The Inter-ORB Communication Architecture
	5.4.1 GIOP
	Figure 5-2. CORBA Inter-ORB

	5.4.2 IIOP
	5.4.3 IOR

	TINA
	Requirements and Design
	6 Requirement Specification

	Requirements
	6.1 Introduction
	Figure 6-1. PCS Enhancements to the TINA Access Se...

	6.2 Objective of this Work
	Technical Requirements
	Target Group
	Platform Independence
	Extensibility
	Figure 6-2. Bridging With Three Different ORB Impl...

	6.3 Summary
	7 Management Toolset Architecture

	Requirements
	7.1 Layering Concepts
	Figure 7-1. Toolset Layering Concepts
	7.1.1 Layer for Application
	Figure 7-2. Toolset Layer for Application

	7.1.2 Layer for Service Access Management

	Facade
	Figure 7-3. Toolset Layer for Service Access Manag...
	7.1.3 Layer for Service Access
	Figure 7-4. Toolset Layer for Service Access Manag...

	7.2 Design of the Overall Objects
	7.2.1 Factories
	Figure 7-5. Abstract and Concrete Factories

	7.2.2 Models
	Figure 7-6. The Class Model With Aggregated Inform...

	7.2.3 Views
	Figure 7-7. The Class View

	7.2.4 Controllers
	Figure 7-8. The Class Controller

	7.2.5 Service Access Manager
	Figure 7-9. The Class Service Access Manager

	7.3 Design of the Applications

	Model-View- Controller
	Command Processor
	Factory Method Adapter
	Mediator
	Singleton
	Figure 7-10. Framework for Management Toolset Appl...
	7.3.1 Administering the Data
	7.3.2 Displaying the Data
	7.3.3 Controlling the Access to the Data
	Controlling Access Rights

	7.4 Design of the Service Access Manager
	Figure 7-11. From Abstract Manager to Concrete Man...

	7.5 Design of the Inter Layer Communication
	7.5.1 Exception Handling
	Mapping of Exception Classes

	Table 7-1. Mapping of Exceptions�
	Figure 7-12. Exceptions Thrown by Layers
	Figure 7-13. Exception Inheritance Hierachy
	7.5.2 Application Layer to Service Access Manager ...
	7.5.3 Service Access Manager Layer to Service Acce...
	8 Objects to be Managed
	Requirements
	8.1 User Agent
	8.2 Local Context
	8.3 Terminal Equipment Agent
	8.4 Registration Server
	9 Package Concepts and Design
	Requirements
	9.1 What Are Packages for?
	9.2 Guidelines for Naming Packages
	Naming Convention

	9.3 Packages of the Management Toolset

	Grey Shaded Package Symbols
	Figure 9-1. The Management Toolset Package
	9.4 Application Programming Interface Related Pack...
	Figure 9-2. The Application Programming Interface ...

	9.5 Package Tangram
	Figure 9-3. The Tangram Package

	9.6 Graphical User Interface Related Packages
	Figure 9-4. The Graphical User Interface Package

	9.7 Packages for Accessing the TANGRAM Platform

	Stubs
	Package TANGRAM
	Figure 9-5. The TANGRAM Package

	Package Life Cycle Manager
	Package Configuration Manager
	Package End User System
	Package Access Session
	9.8 Package for Accessing the Naming Service
	Implementation

	TINA
	10 Package Usage

	Package Usage
	10.1 Package Tree for the Toolset
	Figure 10-1. The Package Tree of the Management To...

	10.2 Package ‘Management’

	Table 10-1. Packages of the Management Package�
	10.3 Package ‘Dialogs’

	Table 10-2. Graphical User Interface Dependent Pac...
	10.4 Package ‘Tangram’

	Table 10-3. Packages Created from the Tn IDL�
	10.5 Package ‘Naming Context’
	11 Abstract Classes, Interfaces and Exceptions
	Package Usage
	11.1 Classes

	Table 11-1. Abstract Classes Defined in Package mn...
	11.2 Interfaces

	Table 11-2. Interfaces Defined in Package mngmt
	11.3 Exceptions

	Table 11-3. Exceptions Defined in Package mngmt
	12 Dynamic Model
	Package Usage
	12.1 Application Layer
	Initialization Phase
	1. Create a factory.
	2. Query factory for a specific Service Access Man...
	3. Create the model.
	4. Create the views.
	5. Create the command processor.
	6. Create the controllers.
	7. Pass the controller to a view component.
	8. Create mediators, if needed.
	9. Create visual components (menu, statusbar, butt...
	Figure 12-1. Initialization Phase of a Management ...

	12.2 Platform Access
	Figure 12-2. Modification of Data
	1 The View asks the Controller to save modified da...
	2 The controller creates a ModifyCommand.
	3 The controller passes the ModifyCommand to the C...
	4 The CommandProcessor invokes the ModifyCommand t...
	5 The ModifyCommand contacts the Model interface t...
	6 The Model contacts the Service Access Manager in...

	13 User Agent Management

	Package Usage
	Figure 13-1. ODL Extract of UA.ODL

	Table 13-1. Classes in Package ‘ua’
	14 Terminal Management
	Package Usage
	Figure 14-1. ODL Extract of TEA.ODL

	Table 14-1. Classes in Package ‘tea (Continued)‘
	15 Location Management
	Package Usage

	Table 15-1. Classes in Package ‘lcxt’ (Continued)
	16 Registration Management
	Package Usage

	Table 16-1. Classes in package ‘rs’
	17 Utilities
	Package Usage
	17.1 Classes

	Table 17-1. Classes in Package ‘util’
	17.2 Interfaces

	Table 17-2. Interfaces in Package ‘util’
	18 Graphical User Interfaces
	Package Usage
	18.1 Shared Views and Dialogs

	Table 18-1. Classes in Package ‘dialog’
	18.2 User Agent

	Table 18-2. Classes in Package ‘viewUA’
	18.3 Local Context

	Table 18-3. Classes in Package ‘viewLCxt’
	18.4 Terminal Equipment Agent

	Table 18-4. Classes in Package ‘viewTEA’
	18.5 Registration Server

	Table 18-5. Classes in Package ‘viewRS’
	19 Java’s Applications and Applets
	Package Usage
	19.1 The Usage of Applications and Applets
	19.2 The Management Toolset Used With Applications...
	Figure 19-1. Management Applet Loaded With a Netsc...

	19.3 Problems While Using Applets
	19.3.1 Connecting Different Hosts
	19.3.2 Loading CORBA Functionalities

	19.4 Possible Solutions
	19.4.1 Usage of A Gateway-Server
	Figure 19-2. Using an Additional Server as Gateway...

	19.4.2 Usage of ‘Thin Clients’
	Figure 19-3. Management Applets as ‘Thin Clients’

	Views–The Graphical User Interface

	TINA
	20 User Data Management

	User Agent
	20.1 The PCS User Agent
	20.2 Usage
	Figure 20-1. Main Window ‘User Configuration’
	20.2.1 How to Start
	1 Edit the script file to fit your personal enviro...
	2 Start the script file.

	20.2.2 Listing of all Available Users in the Syste...
	20.2.3 Getting User Data
	1 First list all the users in the system by pressi...
	2 Choose a user in the list with the mouse or the ...
	3 Press spacebar on the keyboard or click with the...

	20.2.4 Creating a New User Agent
	1 Insert a unique user id in the ‘User Id’ field.
	2 Edit the other fields appropriate to the new use...
	3 Press the ‘New’ button.

	20.2.5 Modify User Data
	1 List all available users.
	2 Select a user from list.
	3 Change user data.
	4 To save changes, press the ‘Modify’ button.

	20.2.6 Undo and Redo
	Figure 20-2. Menus ‘Undo’ And ‘Redo’

	20.2.7 Logging
	1 Select Options from the menu and then select ‘Lo...
	2 Set the desired options in the dialog shown in F...
	Figure 20-3. Dialog ‘Logging Options’

	20.2.8 Dialog About
	Figure 20-4. Dialog ‘About’

	21 Terminal Equipment Management

	User Agent
	21.1 The PCS Terminal Equipment Agent
	Figure 21-1. Main Window ‘Terminal Management Appl...

	21.2 Usage
	21.2.1 How to Start
	1 Edit the start script file for the Terminal Mana...
	2 Start the Terminal Management application with t...

	21.2.2 Listing of all Available Terminals of the S...
	1 Press ‘List Terminals’ button.
	2 Press ‘List’ button.
	Figure 21-2. Dialog ‘Select Terminal’

	21.2.3 Getting Terminal Data
	Choosing a terminal from the list
	1 Press ‘List Terminal’ button in main application...
	2 Press ‘List’ button in the dialog titled ‘List o...
	3 Select a terminal from the list.

	Insert a terminal name in the ‘Current Terminal’ e...
	1 Enter the name into the ‘Current Terminal’ field...
	2 Query terminal data with the ‘Select’ button.

	21.2.4 Creating a New Terminal Equipment Agent
	1 Enter a new label in the ‘Label’ field.
	2 Edit other terminal information data.
	3 Press the ‘New’ button.
	Figure 21-3. Group ‘Common Terminal Information’

	21.2.5 Modifying Terminal Data
	1 Select a terminal.
	2 Make changes to the terminal data.
	3 Press the ‘Modify’ button.
	Figure 21-4. Group ‘Control’

	21.2.6 Set Codings of Connection Control
	Figure 21-5. Dialog ‘Supported Codings’
	1 Select the ‘Codings’ button in the ‘Connection C...
	2 Change to the dialog titled ‘Supported Codings’....
	3 Select codings from the ‘Available’ list.
	4 To insert the chosen codings into the ‘Codings f...

	21.2.7 Set Coding Quality of Service Control
	Figure 21-6. Dialog ‘Coding Quality’
	1 Press the ‘Coding’ dialog from the ‘Service Cont...
	2 Insert codings and their parameters.
	3 Choose ‘OK’ to accept or ‘Cancel’ to dismiss.

	21.2.8 Undo and Redo
	21.2.9 Logging

	22 Location and Location Context Management

	User Agent
	22.1 The PCS Location
	22.2 The PCS Local Context
	22.3 Usage
	Figure 22-1. Main Window ‘Location Configuration M...
	22.3.1 How to Start
	1 Edit the script file to start the application co...
	2 Start the script file.

	22.3.2 Listing of all Available Terminals in the S...
	22.3.3 Getting Location Data
	1 List all available locations of the system.
	2 Choose a location from the list.

	22.3.4 Creating a New Location
	1 Select a location ID that is not used in the sys...
	2 Edit the location data.
	3 Select button ‘new’.

	22.3.5 Modifying a Location
	1 Get location data.
	2 Edit location data.
	3 To save modifications press ‘Modify’ button.

	22.3.6 Deleting a Location
	1 Select a location from the list.
	2 Press ‘Delete’ button.

	22.3.7 Configuring a Local Context
	1 Select a location.
	2 Change to the ‘Terminal’ dialog.
	3 List all available terminals of the system.
	4 To add a terminal to the location, select a term...
	5 To remove a terminal from a location, select the...
	Figure 22-2. Dialog ‘Add Terminals to a Location’

	22.3.8 Undo and Redo
	22.3.9 Logging

	23 Registration Management

	User Agent
	23.1 The PCS Registration Server
	23.2 Usage
	Figure 23-1. Dialog ‘Registration Management’
	23.2.1 How to Start
	1 Edit the start script file to fit to your enviro...
	2 Start the application with the script file.

	23.2.2 Listing of all Registered Users
	Figure 23-2. Group ‘User Registration’

	23.2.3 Registering a User
	1 Press the ‘Users’ button in the ‘User Registrati...
	2 Change to the ‘Users’ dialog.
	3 Select a user.
	4 Change to the main application.
	5 Press the ‘Locations’ button in the ‘User Regist...
	6 Change to dialog ‘Locations’.
	7 Select a location.
	8 Change to the main application.
	9 Press the ‘Register’ button.
	Figure 23-3. Dialogs ‘Users’ and ‘Locations’

	23.2.4 De-register a User
	1 List all registered users.
	2 Select a user from the ‘Registered Users’ list.
	3 Press the ‘De-register’ button.

	23.2.5 Purge Registrations
	1 Enter time from which to start purging.
	2 Press button ‘Remove’.
	Figure 23-4. Group ‘Timedependent Deletion of Regi...

	Conclusion

	TINA
	24 Summary

	Summary
	24.1 Design
	24.2 Implementation
	Impacts on Implementation Cycles
	The Impact of Java
	Usage of Java’s Automatic Source Code Documentatio...
	Usage of CORBA

	24.3 Experiences, Problems and Recommendations
	24.3.1 Flaws in Java
	24.3.2 Converting Applications to Applets
	24.3.3 Performance
	24.3.4 Using a Graphical User Interface Builder

	25 Suggestions for Future Extensions

	Summary
	25.1 Towards TINA Service Architecture 4.1
	25.2 Management as TINA Service
	25.3 Security
	25.4 Logging
	25.5 Performance
	1. The C++ server implementation provides operatio...
	2. The management toolset is optimized to avoid wa...

	25.6 Usage of Different Platforms
	25.7 Integration of Authoring Components
	25.8 Applets in a Netscape Browser
	1. A gateway to other hosts has to provide all ope...
	2. For a server implementation the critical operat...
	3. The operations have to be defined in IDL.
	4. Exceptions thrown by the API layer have to be r...

	25.9 Extended Usage of Factories
	Appendix

	TINA
	26 Deployment

	Deployment
	26.1 Start Parameter for the Applications

	Table 26-1. List of Available Start Parameter
	26.2 Using the Object Request Broker
	26.3 Packages Needed to Run the Applications

	Table 26-2. Packages Needed to Run the Management ...
	26.4 Script Files to Start the Applications
	User Data Configuration Tool
	Figure 26-1. Script File to Start the User Data Co...

	Terminal Data Configuration Tool
	Figure 26-2. Script File to Start the Terminal Dat...

	Location Data Configuration Tool
	Figure 26-3. Script File to Start the User Data Co...

	Registration Management Tool
	Figure 26-4. Script File to Start the Registration...

	27 Programmers Guide
	Deployment
	27.1 The Programming Environment
	Java Development Kit
	Widgets
	CORBA Broker Packages

	27.2 Generating Java Binary Code
	Make Files

	27.3 Running and Testing the Binaries
	Test Script Files

	27.4 Source Code Documentation
	Figure 27-1. Source Code Documentation Available w...

	28 Style Guide

	Deployment
	28.1 Structure and Documentation
	Packages
	Class Files
	Comments

	28.2 Naming Conventions
	Packages
	Classes
	Exceptions
	Methods
	Fields
	Constants

	28.3 Access to Class Fields
	Setting the Value of a Class Field
	Example:
	Reading the Value of Class Fields
	Example:

	28.4 Recommendations
	import
	null references
	Instance Variable

	29 Notations

	Deployment
	29.1 Computational Objects
	Figure 29-1. Computational Object Graphical Descri...

	29.2 Engineering Objects
	Figure 29-2. Engineering Computational Object Grap...

	29.3 Interaction Diagrams
	Figure 29-3. Interaction Diagram Notation

	29.4 Packages
	Figure 29-4. Package Notation

	29.5 OMT Notation
	Class
	Generalization (Inheritance)
	Abstract Operation
	Association
	Multiplicity of Associations
	Association as Class
	Aggregation

	30 Catalog of Applied Design Patterns

	Deployment
	30.1 What are Design Patterns for?
	30.2 How to Read this Chapter
	30.3 Layers
	Intent
	Problem
	Solution
	Structure
	Benefits
	Liabilities
	Applicability

	30.4 Observer
	Intent
	Problem
	Solution
	Structure
	Figure 30-1. Structure of the Design Pattern ‘Obse...

	Benefits
	Liabilities
	Applicability

	30.5 Model-View-Controller
	Intent
	Problem
	Figure 30-2. Multiple Views of the Same Model

	Solution
	Structure
	Figure 30-3. Structure of the Design Pattern ‘Mode...

	Benefits
	Liabilities
	Applicability

	30.6 Command
	Intent
	Problem
	Solution
	Structure
	Figure 30-4. Structure of the Design Pattern ‘Comm...

	Benefits
	Liabilities
	Applicability

	30.7 Command Processor
	Intent
	Problem
	Solution
	Figure 30-5. Structure of the Design Pattern ‘Comm...

	Structure
	Benefits
	Liabilities
	Applicability

	30.8 Factory Method
	Intent
	Problem
	Solution
	Structure
	Figure 30-6. Structure of the Design Pattern ‘Fact...

	Benefits
	Liabilities
	Applicability

	30.9 Singleton
	Intent
	Problem
	Solution
	Structure
	Figure 30-7. Structure of the Design Pattern ‘Sing...

	Benefits
	Liabilities
	Applicability

	30.10 Facade
	Intent
	Problem
	Solution
	Structure
	Benefits
	Liabilities
	Applicability
	Figure 30-8. Structure of the Design Pattern ‘Faca...

	30.11 Mediator
	Intent
	Problem
	Solution
	Structure
	Figure 30-9. Structure of the Design Pattern ‘Medi...

	Benefits
	Liabilities
	Applicability

	31 A Cookbook for Portable Clients—A Pattern Syste...

	Deployment
	31.1 Portable Client
	Context
	Problem
	Solution
	Structure
	Collaboration
	Consequences

	31.2 The Sight
	Context
	Problem
	Solution
	Structure
	Collaboration

	31.3 The Transit
	Context
	Problem
	Solution
	Structure
	Collaboration
	Consequences

	31.4 The Admittance
	Context
	Problem
	Solution
	Also known as

	32 Bibliography
	TINA-C
	Abarca+97
	Bagley96
	Berndt+95
	Brown+94
	Chapman+95
	Christensen+95
	Farley+97
	Fuente+94
	Graubmann+94
	Handegård+96
	Mulder97
	Leydekkers+95
	Leydekkers+95a
	Parhar96
	Abarca+96
	Takita+97
	Yates+97
	Java

	Aitken96
	Arnold+96
	Flanagan96
	Geary+97
	Gosling95
	Lea96
	Niemeyer+96
	Oaks+97
	Papurt+96
	Wayne96
	Java Coding Style Guidelines

	Friendly95or96
	Lea97
	Naval96
	Sandvik96
	Davis97
	PCS in TINA

	Arbanowski+96
	Eckardt+96a
	Arbanowski+96a
	CORBA

	Eckert95
	HP95
	HP95a
	HP95b
	IONA94
	IONA95
	IONA95a
	Kitson95
	Mowbray+95
	OMG:ORB95
	OMG:Services95
	OMG:Mgmt95
	OMG:Facilities95
	Orfali+96
	Orfali+97
	Vinoski97
	Visigenic96a
	Visigenic96b
	TANGRAM

	Durmosch+97
	Egelhaaf96
	Eckert+95
	Schoo95
	Schoo+96
	Eckert96
	Object-Oriented Programming

	Budd91
	Booch91
	Jacobson+92
	Khoshafian+95
	Webster95
	Design Patterns

	Alexander+77
	Brown+95
	Coplien94
	Coplien97
	Beck+94
	Buschmann+96
	Fowler97
	Gamma+94
	Helm95
	Kerth+97
	Krasner+88
	Mellor+97
	Mowbray+97
	Monroe+97
	Nielsen+96
	Riehle96
	Riehle96a
	Riehle+96
	Riehle97
	Pree95
	Vlissides+96
	Xin96
	Design Patterns in the Internet

	Portland-W3
	Schmidt-W3
	UIUC-W3
	Vlissides96-W3
	Modeling and Design

	Balzert94
	D’Souza96
	D’Souza97
	Jacobson+95
	Meyer94
	Rational97a
	Rumbaugh94
	Rumbaugh+91
	Rumbaugh95
	Rumbaugh95a
	Rumbaugh96a
	Rumbaugh96b
	Shaw+96
	Tepfenhart+97
	General Programming

	Arthur93
	McConnell93
	Maguire93
	Graphical User Interface

	Cooper95
	Horton94
	Howlett96
	Weinschenk+95
	Miscellaneous

	Kitson95a
	Magedanz+96

	33 Glossary
	34 Acronyms
	35 Index
	A
	Access Application
	Access Session 10, 11, 13, 15, 19, 69
	Applets 93
	Appletviewer 93
	Application Layer 9, 72, 73
	Applications 93
	AssCm 26

	B
	B-ISDN 9

	C
	Class
	Client
	Command Processor, mapping to 71
	Communication
	Communication Session 10, 11
	Configuration Manager 24, 26, 69
	Control Interface 29
	CORBA 94, 95
	CORBAfacilities 13
	CORBAservice 13
	Core-Object 29
	CosNaming 69
	CPE 17

	D
	Distributed

	E
	End User System 69
	Enumeration 80
	EnvCm 26
	Environment Configuration Manager 26
	ESIOP 36

	F
	Factory Method 71
	Fat client 95

	G
	Gateway 95, 96
	General Inter-ORB Protocol 37
	GIOP

	H
	Hardware Resource Layer 9, 10
	HotJava 93
	HP Distributed Smalltalk 21, 24
	HP-DST

	I
	Identification 19
	idl2java 69, 96
	IIOP 36, 37
	Implementation Repository 24
	Interface
	Internet Explorer 93
	Internet Inter-ORB Protocol 36, 37
	Interoperable Object Reference 24, 36, 38, 95
	Inter-ORB Protocol
	Invitation 18
	Invitation Handling
	Invitation Screening 18
	IONA 21
	IOR
	ISDN 9

	L
	LCM
	Life Cycle
	Local Context 17

	M
	Management Layer 71
	Mediator object 75
	mgmt 68
	Microsoft 93
	Mobility 11, 16
	Mobility Support
	Model-View-Controller 71, 78
	MVC

	N
	Naming
	Native Computing 9
	NCCE 9, 10, 21
	Netscape 93, 95
	Network Management 9

	O
	Object Group 13
	Object Management Architecture 13
	Object Management Group 12
	Object Request Broker 13
	Observer Pattern 144
	OMG
	Orbix 21

	P
	Package
	Packages 67
	Pattern
	Personal
	Personal Communications Support 19
	Personal Mobility Support 16
	Platform
	Privacy 17
	Processing Environment
	Provider
	Provider Domain

	R
	Reachability 15
	Registraiton Server Views 68
	Registration
	Registration Schedule
	Registration Server Views 68
	Repository

	S
	Secretary
	Separation Aspects 12
	Service Access Layer 76
	Service Access Manager Layer 72
	Service Session 10, 11, 15
	Session
	Smalltalk 95
	Smalltalk Image 95
	Software Engineering 9
	Statusbar object 75
	Stream Deliverable Documents 9

	T
	T_Bearer 80
	T_Coding 80
	T_Coding_Attribute 80
	T_CodingQuality 80
	T_Comm_protocol 80
	T_Media 80
	T_Mode 80
	T_PresentationSupport 80
	T_ServiceIdList 80
	T_TermAttributes 81
	T_TermConnAttributes 81
	T_Terminal 81
	T_TermInfo 81
	T_TermServAttributes 81
	T_TermState 81
	T_TermType 80
	TANGRAM
	TANGRAM DPE 95
	TEA.ODL 79
	Telecommunication Applications Layer 9
	Terminal
	Terminal Equipment Views 68
	Terminal Management 79
	Thin client 95
	TINA

	U
	UA.ODL 77
	UAP 74
	UCxt
	Usage Context 17
	User
	User Agent Management 77
	User Domain
	User Session Management 16
	USM

	V
	Visibroker 96
	Visigenic 96
	Visual elements 93

	W
	Web Server 95

